

LINEAR UNITS

About Us

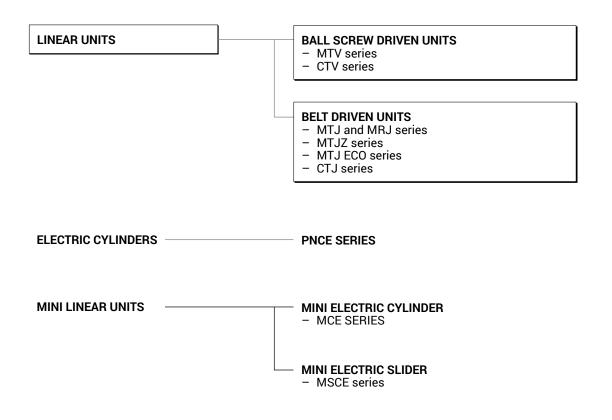
Our company was established in 1990 and, since then, it is privately owned. After 7 years of experience in metal processing as a contractor, the company Hypex (Unimotion) was created and operated in the following areas: special purpose machinery manufacture with its own development, trade and assembly in the area of industrial automation.

Due to many years of engineering and substantial engagement in individual problem solving processes, extensive knowledge and experience in the development and manufacture of linear and handling systems were gained. Today we produce mechanical linear units, compact linear units, multi-axis systems as well as customised solutions for high dynamic demands.

Our company's premises, which cover an area of 4500m², offer room for our 75 employees. Production, construction, administration and warehouse; all this can be found under one roof. Our modern machinery with CNC machining centres and CNC automatic lathes enables high-precision manufacture and really high in-house production depth. For example, we ourselves manufacture shaft drives with tooth washers and our screw ends. This is why, quality, reliability, a good price/performance ratio and short delivery times are harmonised to perfection.

Thus, in the production of our standard linear units as well as individual and complex special linear units, we can guarantee high capacity, flexibility and precision.

At the moment, we export our products in more than 30 countries. Inspired by our customers' demands, Hypex (Unimotion) constantly develops new products and system solutions. So you are welcome to contact us. We look forward to meet you and work on your special project! **Unimotion products**


have the quality and

standards to meet

the requirements

of the modern market.

Unimotion Products

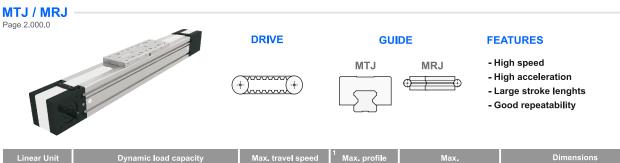


Table of Contents

		Overview
		1.000.0
		MTJ / MRJ
		2.000.0
		MTV
		3.000.0
		MTJ ECO
C	(+),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4.000.0
		MTJZ
	++++++++++++++++++++++++++++++++++++++	5.000.0
		СТЈ
S		6.000.0
		СТУ
		7.000.0
		ACCESSORIES
2.0		8.000.0
		SERVICE LIFE / PERMISSIBLE LOAD FACTOR
M		9.000.0

Overview

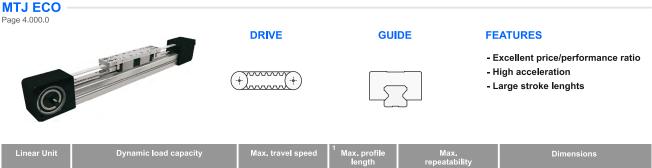
BELT DRIVEN LINEAR UNITS

				length	repeatability		
	Су[N]	Cz [N]	[m/s]	[mm]	[mm]	² Width [mm]	³ Height [mm]
MTJ 40	4	610	6	3000	± 0,08	40	52
MTJ 65 S	9	900	6	6000	± 0,08	65	85
MTJ 65 L	19	9800	6	6000	± 0,08	65	85
MTJ 80 S	17	/100	6	6000	± 0,08	80	100
MTJ 80 L	34	200	6	6000	± 0,08	80	100
MTJ 110 S	24	1800	6	6000	± 0,08	110	129
MTJ 110 L	49	9600	6	6000	± 0,08	110	129
MRJ 40	3400	1700	10	6000	± 0,08	40	52
MRJ 65 L	8600	4400	10	6000	± 0,08	65	85
MRJ 80 L	17100	9000	10	6000	± 0,08	80	100
MRJ 110 L	31000	14000	10	6000	± 0,08	110	129
4			2 2				

¹ For lengths over the stated value in the table above please contact us. ² Profile ³ Profile + carriage

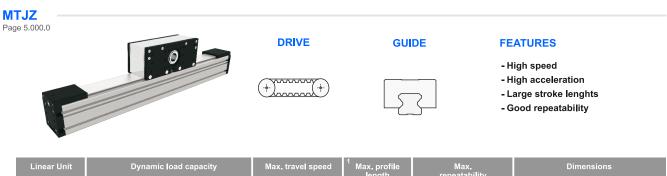
Page 6.000.0

CTJ



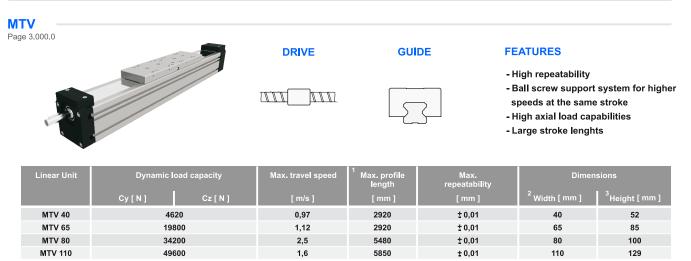
FEATURES

- High speed
- High acceleration
- Large stroke lenghts
- Good repeatability
- High load capabilities
- High flexural rigidity


Linear Unit	Dynamic load capacity	Max. travel speed	¹ Max. profile length	Max. repeatability	Dimen	sions
	Cy[N] Cz[N]	[m/s]	[mm]	[mm]	² Width [mm]	³ Height [mm]
CTJ 90 S	4620	5	6000	± 0,08	90	40
CTJ 90 L	9240	5	6000	± 0,08	90	40
CTJ 110 S	19800	6	6000	± 0,08	110	50
CTJ 110 L	39600	6	6000	± 0,08	110	50
CTJ 145 S	34200	6	6000	± 0,08	145	65
CTJ 145 L	68400	6	6000	± 0,08	145	65
CTJ 200 S	49600	6	6000	± 0,08	200	100
CTJ 200 L	99200	6	6000	± 0,08	200	100
1		2 3.				

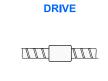
¹ For lengths over the stated value in the table above please contact us. ² Profile ³ Profile + carriage

Linear Unit	Dynamic Io	ad capacity	Max. travel speed	Max. profile	Max. repeatability	Dimen	sions
	Cy [N]	Cz [N]	[m/s]	[mm]	[mm]	² Width [mm]	³ Height [mm]
MTJ 40 ECO S	990	00	3	5960	± 0,1	40	78
MTJ 40 ECO L	198	00	3	5960	± 0,1	40	78
¹ For lengths over	the stated value in the t	able above please con	tact us. ² Profile ³	Profile + carriage			


BELT DRIVEN LINEAR UNITS

			length	repeatability		
	Cy[N] Cz[N]	[m/s]	[mm]	[mm]	² Width [mm]	³ Height [mm]
MTJZ 40	4610	5	3000	±0,08	40	88
MTJZ 65	19800	5	6000	±0,08	65	143,5
MTJZ 80	34200	5	6000	±0,08	80	178,5
MTJZ 110	49600	5	6000	±0,08	110	241
1		2 3				

¹ For lengths over the stated value in the table above please contact us. 2 Profile 3 Profile + carriage


BALL SCREW DRIVEN LINEAR UNITS

¹ For lengths over the stated value in the table above please contact us. ² Profile ³ Profile + carriage

СТУ

GUIDE

FEATURES

- High repeatability

- High load capabilities
- High flexural rigidity

Linear Unit	Dynamic load capacity	Max. travel speed	¹ Max. profile length	Max. repeatability	Dimen	sions
	Cy[N] Cz[N]	[m/s]	[mm]	[mm]	² Width [mm]	³ Height [mm]
CTV 90 S	4620	0,97	750	<u>±</u> 0,01	90	40
CTV 90 L	9240	0,97	750	<u>±</u> 0,01	90	40
CTV 110 S	19800	1,12	1500	<u>+</u> 0,01	110	50
CTV 110 L	39600	1,12	1500	±0,01	110	50
CTV 145 S	34200	2,5	1800	±0,01	145	65
CTV 145 L	68400	2,5	1800	± 0,01	145	65
CTV 200 S	49600	1,6	2200	±0,01	200	100
CTV 200 L	99200	1,6	2200	± 0,01	200	100
¹ For lengths ove	r the stated value in the table above pleas	e contact us. ² Profile ³	Profile + carriage			

MTJ / MRJ

CHARACTERISTICS

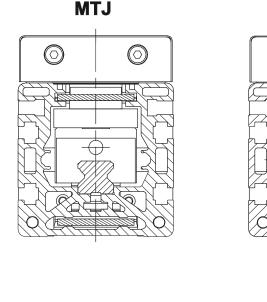
MTJ and **MRJ** Linear Units with toothed belt drive and compact dimensions provide high performance features such as, high speed, good accuracy and repeatability.

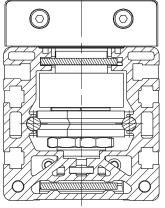
They can easily be combined to multi-axis systems.

Excellent price-/performance ratio and quick delivery time are ensured.

The compact, precision-extruded aluminum Profile from 6063 AL with integrated Zero-backlash Ball rail guide system, allows high load capacities and optimal cycles for the movement of larger masses at high speed.

For very high speeds, up to 10m/s, the Track Rollers (journal Bearings) of the type MRJ are particularly suitable.

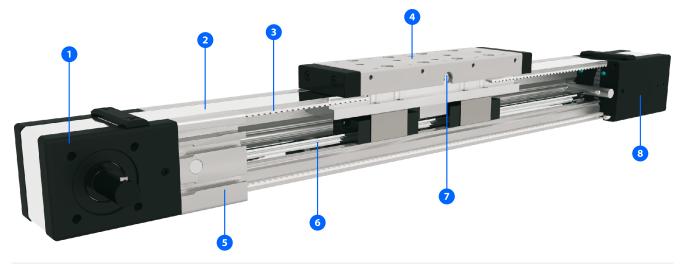

In the Linear Units MTJ and MRJ is used a pre-tensioned steel reinforced AT polyurethane timing toothed belt. In conjunction with a Zero-backlash drive pulley high moments with alternating loads with good positioning accuracy, low wear and low noise can be realized.

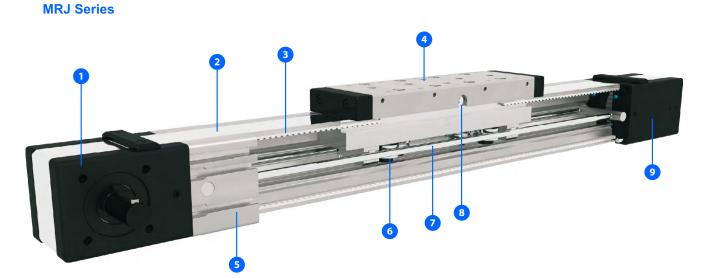

The in the Profile slot driving Polyurethane timing belt protects all the parts in the Profile from dust and other contaminations. As optional, a corrosion-resistant protection strip is available.

The aluminum profile includes T-slots for fixing the Linear Unit and for attaching sensors and switches. Also, a Reed switch can be used here.

Different carriage lengths with central lubrication port, allow easy re-lubrication of the Linear Unit and allow the possibility to attach additional accessories on the side.

For the Linear Units MTJ and MRJ various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.


MRJ


 The aluminium profiles are manufactured according to the medium EN 12020-2 standard Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2 mm

STRUCTURAL DESIGN

MTJ Series

- 1 Drive block with pulley
- 2 Corrosion-resistant protection strip (available also without protection strip)
- 3 AT polyurethane toothed belt with steel tension cords
- 4 Carriage; with built in Magnets
- 5 Aluminium profile-Hard anodized
- 6 Linear Ball Guideway
- 7 Central lubrication port; both sides
- 8 Tension End with integrated belt tensioning system

- **1** Drive block with pulley
- 2 Corrosion-resistant protection strip (available also without protection strip)
- 3 AT polyurethane toothed belt with steel tension cords
- 4 Carriage; with build in Magnets
- 5 Aluminium profile-Hard anodized
- 6 Track Roller (journal Bearing)
- 7 Two hardened steel Round guide (58/60 HRC)
- 8 Central lubrication port; both sides
- 9 Tension End with integrated belt tensioning system

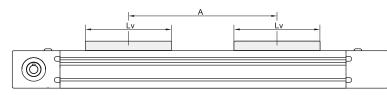
HOW TO ORDER

	MT.I -	65	- 700	- 12	250	- 10R	-
Series : MRJ MTJ Size : 40 65 80 110		65	- 700	- <u>L2</u>	- <u>250</u> -	- <u>10R</u>	-
Absolute stroke [mm] : Absolute stroke = Effective stroke + 2 x Sat							
Carriage Version :							
S : Short (only for MTJ series)							
L : Long							
_eave blank : For MRJ 40, MTJ 40							
Number of carriages :							
The stated number specifies the number of	carriages on c	one Linear u	unit (up to 5 ca	arriages avalia	ble)		
.eave blank : For the case of one carriage							
Distance between two carriages [mm] :							
Leave blank : For the case of one carriage							
Type of drive pulley :							
0 : Pulley with through hole							
1: Pulley with journal (with Keyway)							
10 : Pulley with journal (without Keyway)							
2: Pulley with journal on both sides (with k	<eyway)< td=""><td></td><td></td><td></td><td></td><td></td><td></td></eyway)<>						
20 : Pulley with journal on both sides (witho	ut Keyway)						
3: Without drive unit							
Drive journal position :							
L : Journal on left side							
R : Journal on right side							
Leave blank : For type of drive pulley 0, 2, 2	20 and 3						
Protection cover :							
0 : In profile groove guided Polyurethane to							

 ${\bf 0}$: In profile groove guided Polyurethane toothed belt

 $\ensuremath{\textbf{1}}: \ensuremath{\mathsf{Corrosion}}\xspace{-}{\mathsf{resistant}} \ensuremath{\mathsf{protection}}\xspace{-}{\mathsf{strip}}$

General technical data


Linear Unit	Carriage Iength		Dynamio ad capao			Dynamic moment		Max. permissible loads Forces Moments					Moved mass	Max. Repeatab	ility	* Max. Iength	* Max. stroke	** Min. stroke
	Lv [mm]	C [N]	Cy [N]	Cz [N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fру [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	[kg]	[mm]]	Lmax [mm]	[mm]	[mm]
MTJ 40	92	4610	1	1	28	90	90	3850	3850	14	75	75	0,28	± 0,08		3000	2876	25
MRJ 40	92	1	3400	1700	20	21	25	1015	1090	13	14	7,6	0,26	± 0,08		6000	5876	0
Values f (equatio	For minimum stroke below the stated value in the table above please contact us. Operating temp. 0°C ~ +60°C Duty cycle 100% For operating temperature out of the																	
All the capacit theoret factor.	(equation of defining the linear unit length for particular size of the linear unit needs to be used). Operating conditions ** For minimum stroke below the stated value in the table above please contact us. Operating temp. 0°C ~ +60°C Duty cycle 100%																	
	us of ela s 000 N / m		:					2.	0			·	Fpy Cy, C					

General technical data for double carriage

Linear	Carriage	Dyna	mic load c	apacity	*	Dynamic momen	t	* Max. permissible loads					
Unit	version							Foi	Forces Mon			oments	
		C[N]	Cy [N]	Cz [N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N] Fpz [N]		Mpx [Nm] Mpy [Nm]		Mpz [Nm]	
MTJ 40	2	9220	1	1	57	4,6 × A	4,6 × A	7690	7690	28	3,8 × A	3,8 × A	
MRJ 40	2	1	6800	3400	40	1,7 × A	3,4 × A	2030	2180	26	1,1 × A	1,0 × A	

*A - Distance between carriages [mm]. More info on following pages.

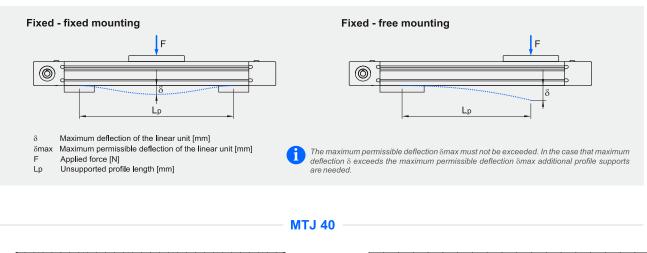
Presented values are for informational purposes only. Exact values can be calculated using our sizing selection tool on Unimotion web site.

Drive and belt data

61)

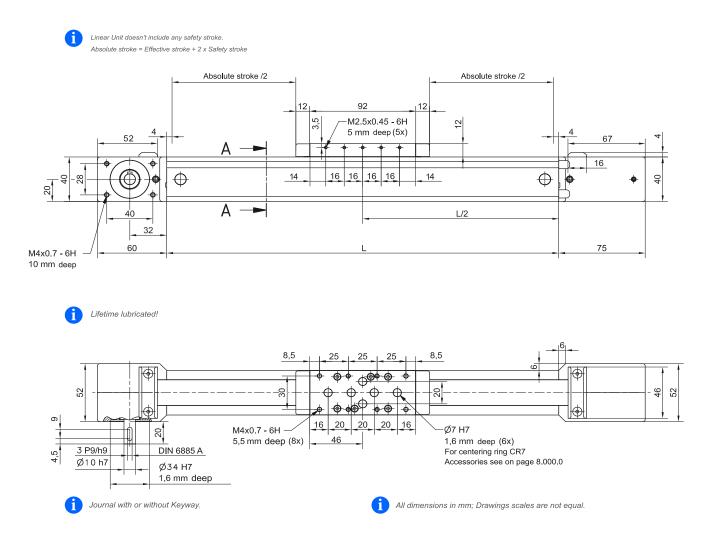
Linear Unit	* Max. travel speed	Max. drive torque Ma	** No load torque ^{With} strip Without strip	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant Cspec	* Max. acceleration
	[m/s]	[Nm]	[Nm] [Nm]	[mm / rev]	[mm]		[mm]	[N]	[N]	[m/s²]
MTJ 40	6	3,7	0,4 × nc 0,2 × nc	99	31,51	AT 3	20	235	225000	70
MRJ 40	10	0,1	0,4 × nc 0,2 × nc		51,51	ALT	20	235	225000	70

*Max. travel speed and max. acceleration of Linear unit with the Corrosion-resistant protection strip is 1,5 m/s and 50 m/s², respectively. For travel speed and acceleration over the stated value in the table above please contact us.

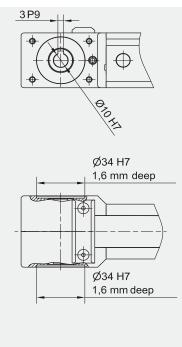

** The stated values are for strokes (and for distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation.

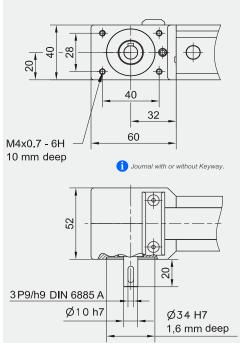

Mass and mass moment of inertia

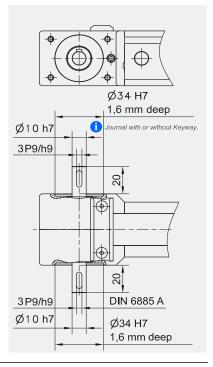
Linear Unit	* Mass of linear unit	* Mass moment of inertia	Planar moment o inertia		
	[kg]	[10 ⁻⁵ kg m ²]	ly [cm⁴]	lz [cm ⁴]	
MTJ 40	1,3 + 0,0024 × (Abs. stroke + (nc - 1) × A) + 0,28 × (nc - 1)	9,7 + 0,0035 × (Abs. stroke + (nc - 1) × A) + 7,0 × (nc - 1)	9.8	11 6	
MRJ 40	1,25 + 0,0022 × (Abs. stroke + (nc - 1) × A) + 0,26 × (nc - 1)	9,3 + 0,0035 × (Abs. stroke + (nc - 1) × A) + 6,5 × (nc - 1)	9,8	11,6	
*Absolute stroke	[mm]	Ass calculation	doesn't include r	nass of motor.	

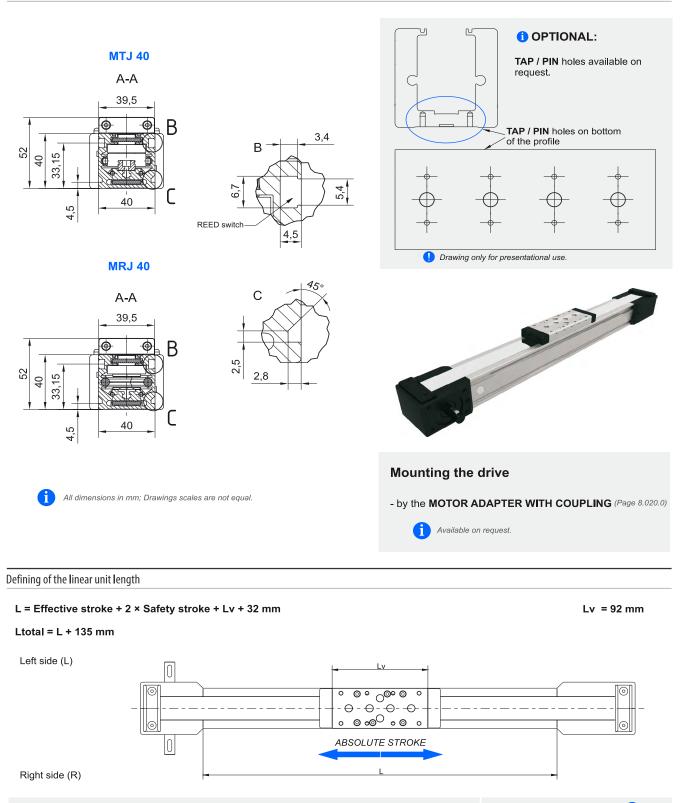

A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages

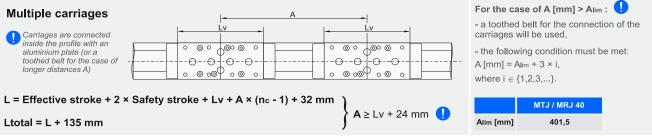
Deflection of the linear unit




reduction gear, switches and clamps.


TYPE 0

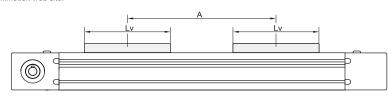



TYPE1L and 1R

TYPE 2

nc - Number of carriages

General technical data


Linear Unit	Carriage length		Dynamio ad capao			Dynamic moment		Max. permissible loads Moved Forces Moments mass						Max. Repeatabil	* Max. ity length	* Max. stroke	** Min. stroke
	Lv [mm]	C [N]	Cy [N]	Cz [N]	Мх [Nm]	My [Nm]	Mz [Nm]	Fру [N]	Fpz [N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]	[kg]	[mm]	Lmax [mm]	[mm]	[mm]
MTJ 65 S	140	9900	1	1	79	59	59	3270	5100	34	34	34	1,00	<u>+</u> 0,08		5820	40
MTJ 65 L	190	19800	1	1	158	1025	1025	6540	10190	60	530	340	1,45	±0,08	6000	5770	40
MRJ 65 L	190	1	8600	4400	74	186	425	1920	1470	25	62	95	1,31	± 0,08		5770	0
Values fi (equation ***For min i R All the of capaciti theoreti factor. 1 applicat recomm	or max. stroke or max. strok n of defining nimum strok ecomme data of dy ies stated ical witho The safet tion and i nend a m us of elas	ke are no the lines e below nded y nded y namic I in the ut cons y facto ts requ inimun	t valid fo ar unit lei the state values upper siderin r depe iested n safet	or multipl ngth for p d value i s of loa ents ar table g any s nds or safety.	e carriago particular n the tabl ads ads ads ads ads ads ads ads ads ads	∋s size of th le above	ie linear	unit nee			Fpz Cz, C	Mz, Mp	z My, Mpy Fpy Cy, C		Operating cond Operating temp Duty cycle For operating tem presented range,	perature c	

General technical data for double carriage

Linear	Carriage	Dyna	mic load ca	apacity	*	Dynamic moment	t	*		Max, permi	ssible loads	
Unit	version							Foi	rces		Moments	
		C[N]	Cy [N]	Cz [N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]
MTJ 65	S2	19800	1	1	158	9,9 × A	9,9 × A	6540	10190	68	5,1 × A	3,3 × A
MTJ 65	L2	39600	1	1	316	19,8 × A	19,8 × A	13080	20380	120	10,2 × A	6,5 × A
MRJ 65	L2	1	17200	8800	148	4,4 × A	8,6 × A	3850	2940	50	1,5 × A	1,9 × A

*A - Distance between carriages [mm]. More info on following pages.

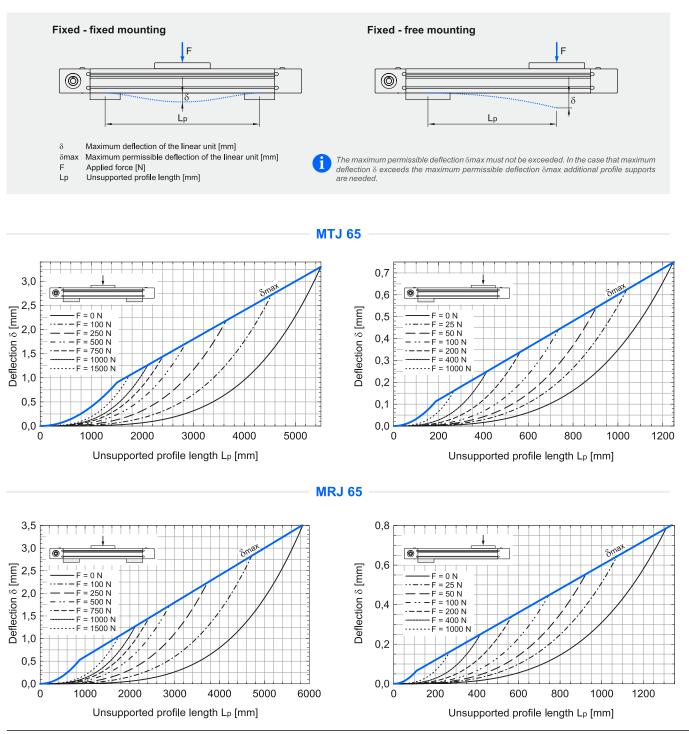
Presented values are for informational purposes only. Exact values can be calculated using our sizing selection tool on Unimotion web site.

Drive and belt data

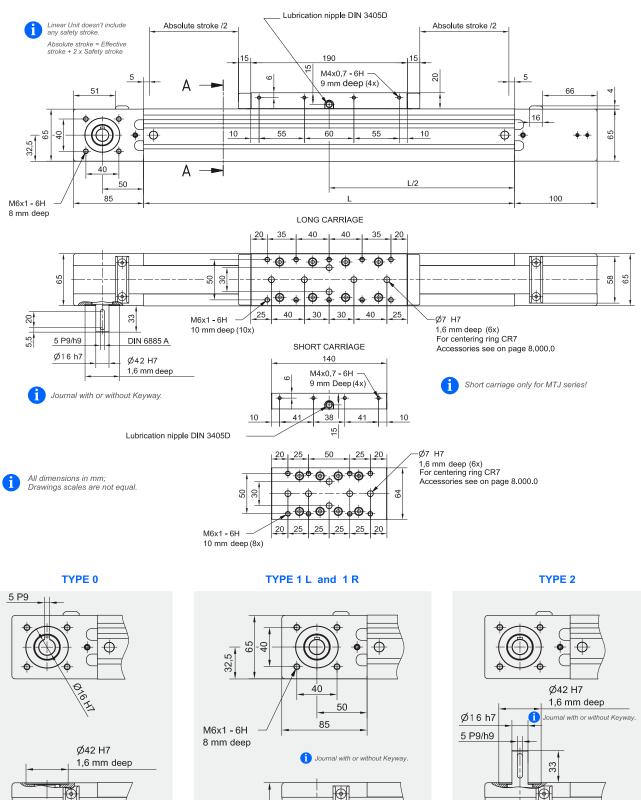
Linear Unit	* Max. travel speed [m / s]	Max. drive torque Ma [Nm]	No load torque with without strip [Nm]	Puley drive ratio	Pulley diameter [mm]	Belt type	Belt width	Max. force transmited by belt [N]	Specific spring constant Cspec [N]	* Max. acceleration [m/s ²]
MTJ 65 S			1,1 × nc 0,8 × nc							
MTJ 65 L	6	13,1	1,2 × nc 0,9 × nc	165	52,52	AT 5	32	500	600000	70
MRJ 65 L	10		1,0 × nc 0,7 × nc							

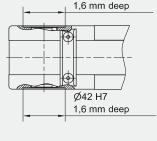
*Max. travel speed and max. acceleration of Linear unit with the Corrosion-resistant protection strip is 1,5 m/s and 50 m/s², respectively.

For travel speed and acceleration over the stated value in the table above please contact us.


** The stated values are for strokes (and for distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation. nc - Number of carriages

Mass and mass moment of inertia


Linear Unit	* Mass of linear unit	* Mass moment of inertia		oment of rtia
	[kg]	[10 ⁻⁵ kg m ²]	ly [cm⁴]	lz [cm ⁴]
MTJ 65 S	4,0 + 0,0055 × (Abs. stroke + (nc - 1) × A) + 1,00 × (nc - 1)	98,4 + 0,0154 × (Abs. stroke + (nc - 1) × A) + 69,0 × (nc - 1)		
MTJ 65 L	4,6 + 0,0055 × (Abs. stroke + (nc - 1) × A) + 1,45 × (nc - 1)	130,1 + 0,0154 × (Abs. stroke + (nc - 1) × A) + 100,0 × (nc - 1)	59,7	74,4
MRJ 65 L	4,3 + 0,0047 × (Abs. stroke + (nc - 1) × A) + 1,31 × (nc - 1)	120,4 + 0,0154 × (Abs. stroke + (nc - 1) × A) + 90,3 × (nc - 1)		
*Absolute stroke	[mm]	Mass calculation	doesn't include r	nass of motor.


A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages

Deflection of the linear unit

reduction gear, switches and clamps.

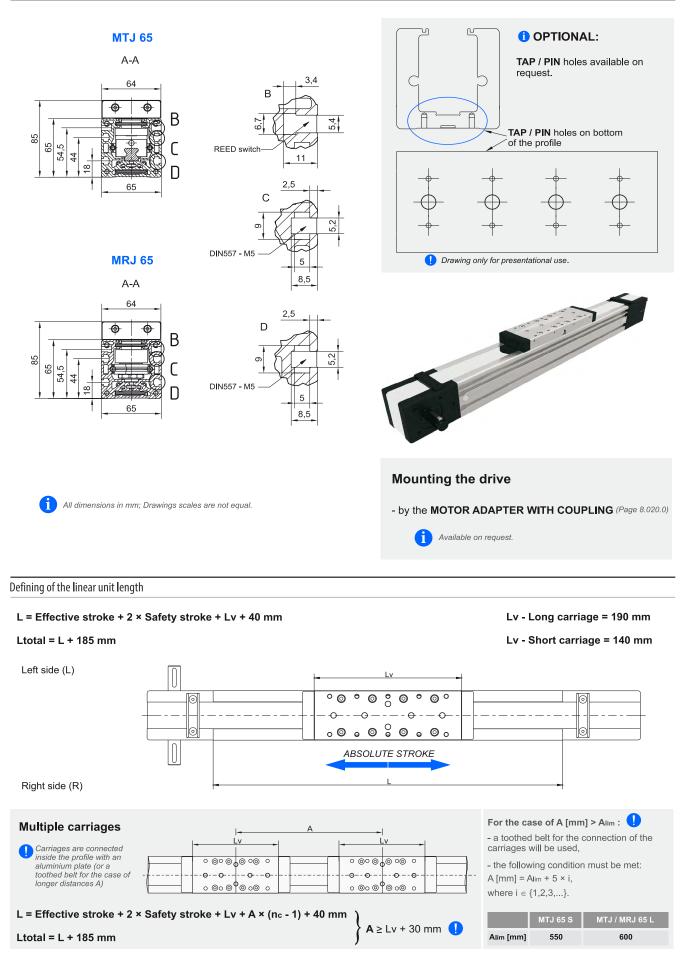
6 ŝ 64. \odot 33 5 P9/h9 DIN 6885 A Ø16 h7

Ø

5 P9/h9

Ø16 h7

33


DIN 6885 A

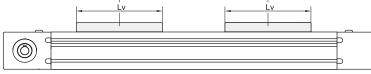
1,6 mm deep

Ø42 H7

1,6 mm deep

Ø42 H7

General technical data


Linear Unit	Carriage Iength		Dynamio ad capao			Dynamic moment		Foi	Max. rces	permissil I	ole loads Momen		Moved mass	Max. Repeatabi	* Ma: lity leng		* Max. stroke	** Min. stroke
	Lv [mm]	C [N]	Cy [N]	Cz [N]	Mx [Nm]	Му [Nm]	Mz [Nm]	Fру [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	[kg]	[mm]	Lma [mn		[mm]	[mm]
MTJ 80 S	170	17100	1	1	185	130	130	4470	7530	110	122	100	1,72	<u>+</u> 0,08			5788	55
MTJ 80 L	260	34200	1	1	370	2565	2565	8930	15060	150	1130	670	2,72	±0,08	600	0	5698	55
MRJ 80 L	260	1	17100	9000	198	511	1145	3400	1760	39	101	228	2,73	± 0,08			5698	0
Values fi (equatio **For mi R All the of capacit theoreti factor, - applica recomm	ths / stroke or max. stro. n of defining nimum strok ecomme data of dy ies stateo ical witho The safet tion and i nend a m us of elas	ke are no the lines e below nded n nded n namic l in the ut cons y facto ts requ inimun sticity	t valid for ar unit lei the state values upper siderin r depe uested n safet	or multipingth for d value of of los of los table g any nds or safety	e carriag particular in the tab ads ad load are safety a the . We	es size of th le above	ne linear	unit nee			Fpz Cz, C	Mz, Mp	z My, Mpy Fpy Cy, C		Operating Operating Duty cycle For operating presented rat	temp.	0°C	

General technical data for double carriage

Linear	Carriage	Dyna	amic load c	apacity	*	Dynamic momen	t	*		Max. permi	ssible loads	
Unit	version		1					Foi	rces		Moments	
		C[N]	Cy [N]	Cz [N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]
MTJ 80	S2	34200	1	1	370	17,1 × A	17,1 × A	8930	15060	220	7,5 × A	4,5 × A
MTJ 80	L2	68400	1	1	740	34,2 × A	34,2 × A	17860	30130	300	15,1 × A	8,9 × A
MRJ 80	L2	1	34200	18000	396	9,0 × A	17,1 × A	6800	3530	78	1,8 × A	3,4 × A

*A - Distance between carriages [mm]. More info on following pages.

Presented values are for informational purposes only. Exact values can be calculated using our sizing selection tool on Unimotion web site.

Drive and belt data

1

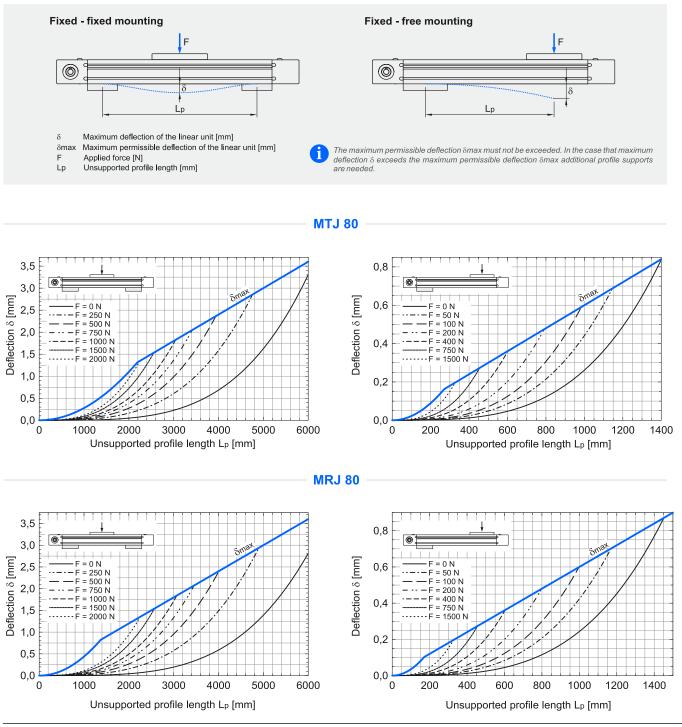
Linear Unit	* Max. travel speed	Max. drive torque Ma	** No load torque With strip	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant Cspec	* Max. acceleration
	[m/s]	[Nm]	[Nm] [Nm]	[mm/rev]	[mm]		[mm]	[N]	[N]	[m/s²]
MTJ 80 S	<u>,</u>		1,5 × nc 1,2 × nc							
MTJ 80 L	6	29,4	1,7 × nc 1,4 × nc	210	66,84	AT 5	50	880	960000	70
MRJ 80 L	10		1,4 × nc 1,1 × nc							

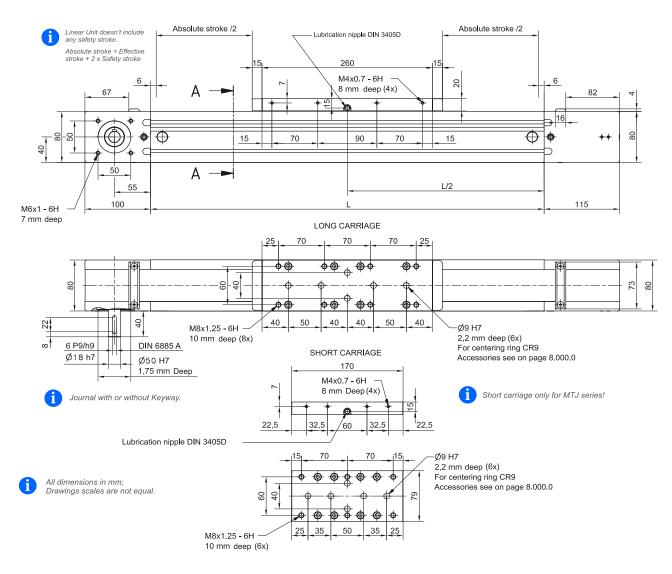
*Max. travel speed and max. acceleration of Linear unit with the Corrosion-resistant protection strip is 1,5 m/s and 50 m/s², respectively.

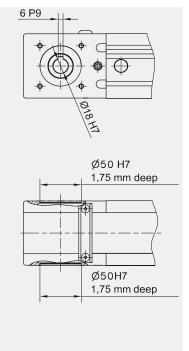
For travel speed and acceleration over the stated value in the table above please contact us.

** The stated values are for strokes (and for distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation. nc - Number of carriages

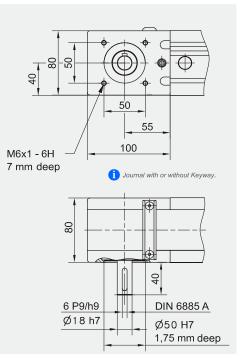
Mass and mass moment of inertia

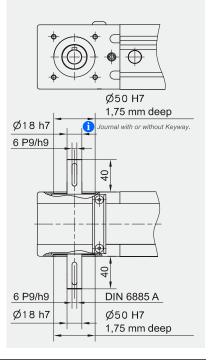

Linear Unit	* Mass of linear unit	* Mass moment of inertia		oment of rtia
	[kg]	[10 ⁻⁵ kg m ²]	ly [cm⁴]	lz [cm ⁴]
MTJ 80 S	6,8 + 0,0085 × (Abs. stroke + (nc - 1) × A) + 1,72 × (nc - 1)	310,6 + 0,0391 × (Abs. stroke + (nc - 1) × A) + 192,1 × (nc - 1)		
MTJ 80 L	8,4 + 0,0085 × (Abs. stroke + (nc - 1) × A) + 2,72 × (nc - 1)	423,3 + 0,0391 × (Abs. stroke + (nc - 1) × A) + 303,8 × (nc - 1)	129,1	173,4
MRJ 80 L	8,2 + 0,0075 × (Abs. stroke + (nc - 1) × A) + 2,73 × (nc - 1)	424,4 + 0,0391 × (Abs. stroke + (nc - 1) × A) + 304,9 × (nc - 1)		
*Absolute stroke	[mm]	Mass calculation	doesn't include i	mass of motor

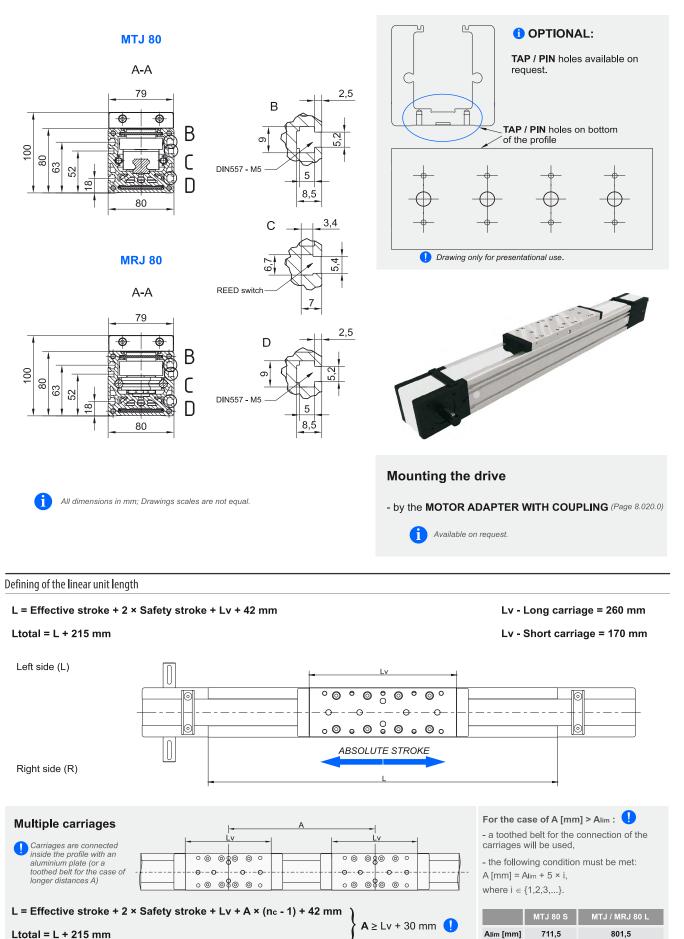

A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages


reduction gear, switches and clamps.

Deflection of the linear unit




TYPE 0

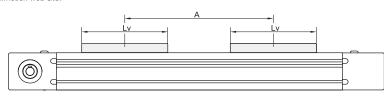


TYPE 1 L and 1 R

TYPE 2

Ltotal = L + 215 mm

General technical data


Linear Unit	Carriage Iength		Dynamio ad capao			Dynamic moment				permissil			Moved mass	Max. Repeatabi	ility 1	* Max. length	* Max. stroke	** Min. stroke
Onit	length	c I		Cz	Mx	Mv I	Mz	For Fpy	ces Fpz	Мрх	Momen Mpy	nts Mpz	11033	Repeatabl	inty	Lmax	SUORE	SHOKE
	Lv [mm]	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]	[N]	[N]	[Nm]	[Nm]	[Nm]	[kg]	[mm]		[mm]	[mm]	[mm]
MTJ 110 S	240	24800	1	1	315	220	220	5000	10130	135	180	100	3,25	<u>+</u> 0,08			5748	65
MTJ 110 L	330	49600	1	/	630	3840	3840	10000	20260	295	1570	775	4,61	± 0,08		6000	5658	65
MRJ 110 L	330	1	31000	14000	406	877	2325	6200	3410	99	214	465	4,78	± 0,08			5658	0
Values fo (equatior	ths / stroke or max. stroi n of defining nimum strok	ke are no the linea	ot valid fo ar unit lei	or multiple ngth for p	e carriag particular	es size of th	e linear	unit nee		used).						rating condi rating temp.	_	C ~ +60°C
	ecomme										Z					cycle		100%
capaciti theoreti factor. T applicat recomm	lata of dy es statec cal witho "he safet ion and i nend a m is of elas 00 N / m	I in the ut cons y facto ts requ inimun	e upper siderin r depe uested n safet	table g any s nds or safety.	are safety the We			en en	4	Mx, M	Fpz Cz, C	Mz, Mp	z My, Mpy Fpy Cy, C		preser	nted range, p	lease cont	act us.

General technical data for double carriage

Linear	Carriage	Dyna	amic load ca	apacity	*	Dynamic momen	t	*		Max, permi	ssible loads	
Unit	version							For	rces		Moments	
		C[N]	Cy [N]	Cz [N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]
MTJ 110	S2	49600	1	1	630	24,8 × A	24,8 × A	10000	20260	270	10,1 × A	5,0 × A
MTJ 110	L2	99200	1	1	1260	49,6 × A	49,6 × A	20000	40520	590	20,3 × A	10,0 × A
MRJ 110	L2	1	62000	28000	812	14,0 × A	31,0 × A	12400	6830	198	3,4 × A	6,2 × A

*A - Distance between carriages [mm]. More info on following pages.

1 Presented values are for informational purposes only. Exact values can be calculated using our sizing selection tool on Unimotion web site.

Drive and belt data

Linear Unit	* Max. travel speed	Max. drive torque Ma	** No load torque ^{With} ^{Without} strip	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant Cspec	* Max. acceleration
	[m/s]	[Nm]	[Nm] [Nm]	[mm / rev]	[mm]		[mm]	[N]	[N]	[m/s²]
MRJ 110 L	10	68,5	2,2 × nc 2,0 × nc							
MTJ 110 S	6	with Keyway	2,2 × nc 2,0 × nc	300	95,49	AT 10	50	1730	2145000	70
MTJ 110 L	0	82,6 without Keyway	2,7 × nc 2,3 × nc							

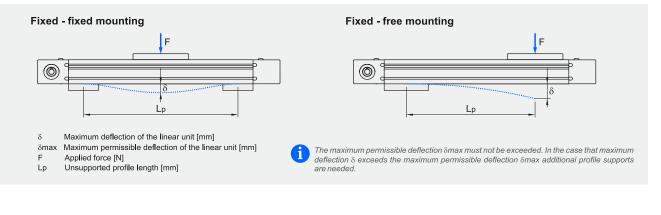
*Max. travel speed and max. acceleration of Linear unit with the Corrosion-resistant protection strip is 1,5 m/s and 50 m/s², respectively.

For travel speed and acceleration over the stated value in the table above please contact us.

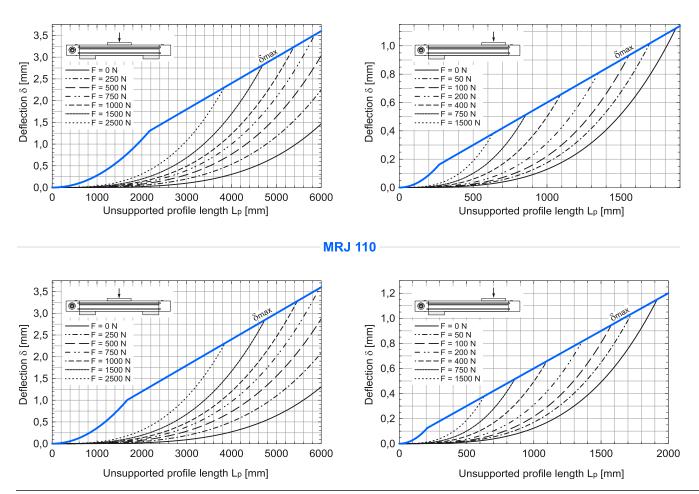
** The stated values are for strokes (and for distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation. nc - Number of carriages

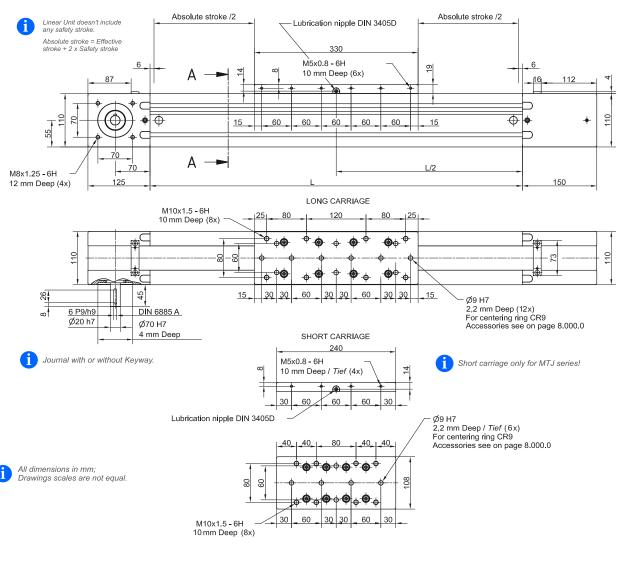
Mass and mass moment of inertia

Linear Unit	* Mass of linear unit	* Mass moment of inertia		oment of rtia
	[kg]	[10 ⁻⁵ kg m ²]	ly [cm⁴]	lz [cm ⁴]
MTJ 110 S	15,0 + 0,015 × (Abs. stroke + (nc - 1) × A) + 3,25 × (nc - 1)	1065,0 + 0,137 × (Abs. stroke + (nc - 1) × A) + 741,9 × (nc - 1)		
MTJ 110 L	17,7 + 0,015 × (Abs. stroke + (nc - 1) × A) + 4,61 × (nc - 1)	1381,0 + 0,137 × (Abs. stroke + (nc - 1) × A) + 1050,9 × (nc - 1)	513,0	620,0
MRJ 110 L	16,3 + 0,0133 × (Abs. stroke + (nc - 1) × A) + 4,78 × (nc - 1)	1420,0 + 0,137 × (Abs. stroke + (nc - 1) × A) + 1089,6 × (nc - 1)		
* Abachuta atraka	[manual]			

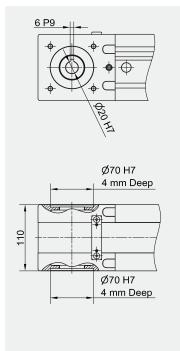

*Absolute stroke [mm]

A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages




Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

Deflection of the linear unit



MTJ 110

TYPE 0

TYPE 1 L and 1 R

70

125

j Journal with or without Keyway.

70

₽

٢

45

DIN 6885 A

Ø70 H7 4 mm Deep

Φ

Ġ

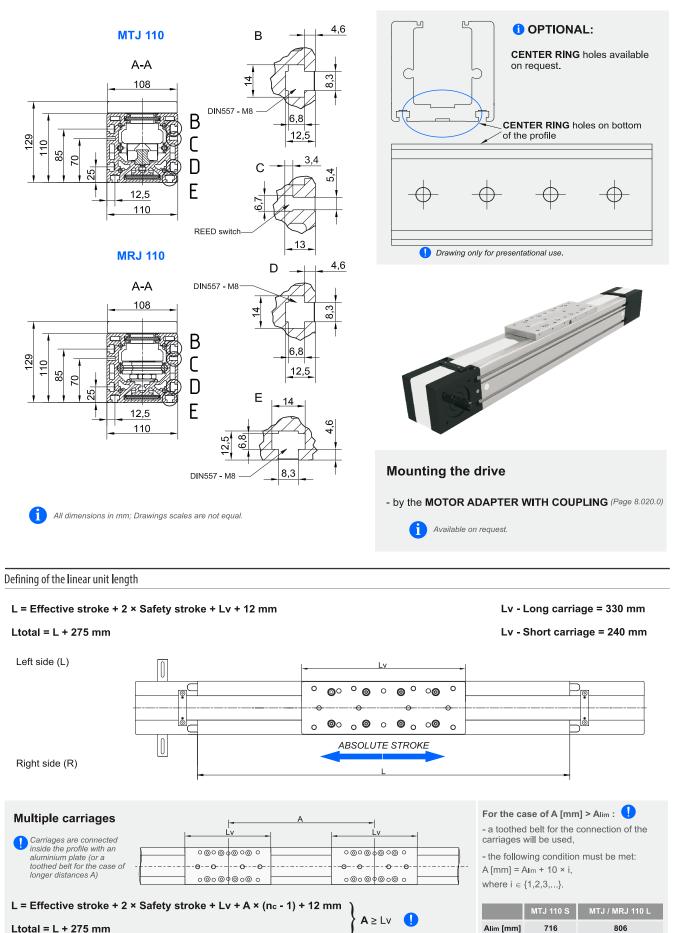
110

55

M8x1.25 - 6H -

12 mm Deep (4x)

2


110

6 P9/h9

Ø20 h7

TYPE 2

Ltotal = L + 275 mm

CHARACTERISTICS

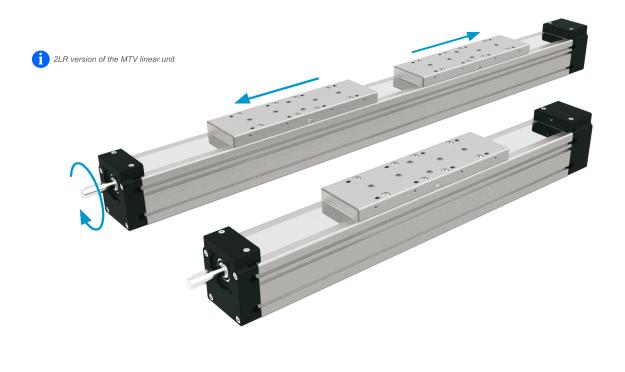
The **MTV** series describes Linear Units with precision ball screw drive, integrated guide rail and compact dimensions. They provide high performances features, such as high speeds, good accuracy and repeatability.

They can easily be combined to multi-axis systems.

Excellent price-/performance ratio and quick delivery time are ensured.

The compact, precision-extruded aluminum Profile from 6063 AL with integrated Zero-backlash Ball rail guide system, allows high load capacities and optimal cycles for the movement of larger masses at high speed.

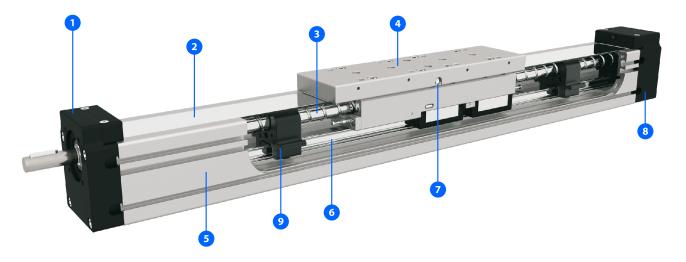
In the Linear Units MTV a precision ball screw, with tolerance class ISO7 (ISO5 on request), with reduced backlash of the ball nut is used.


A corrosion-resistant protection strip, protects all the parts in the profile from dust and other contaminants. The aluminum profile includes T-slots for fixing the Linear Unit and for attaching sensors and switches. Also, a Reed switch can be used here.

The carriage, with central lubrication port, allows easy central re-lubrication of ball screw and Ball rail guide and provides the possibility to attach additional accessories on the side.

For the Linear Units MTV various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.

To achieve higher speeds at the same stroke of the linear unit, the ball screw support system can be integrated. With this feature vibrations and deflections of the ball screw are reduced, therefore longer strokes are possible. The linear unit with integrated support system can have a higher axial load capacity. Ball screw supports are made out of high quality plastic materials with high wear resistance properties. Our system enables ball screw support in horizontal or vertical positioning of the linear unit.


A 2LR version of MTV linear unit is available, where two carriages are moving simultaneously in opposite directions. Both right and left handed precision ball screws are used, which are rigidly connected. The ball screw support system can also be integrated.

 The aluminium profiles are manufactured according to the medium EN 12020-2 standard Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2 mm

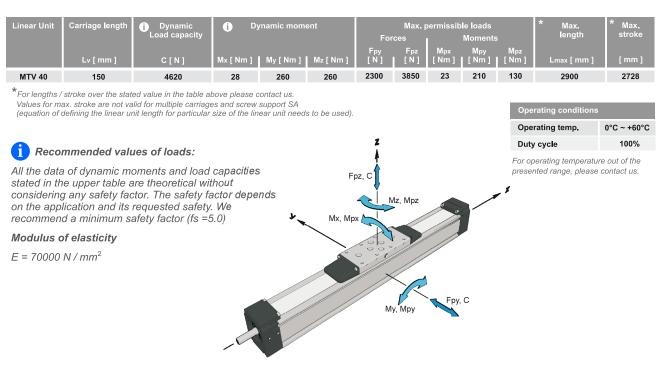
STRUCTURAL DESIGN

Standard version

- 1 Drive block with floating bearing (MTV 110 fixed bearing)
- 2 Corrosion-resistant protection strip
- 3 Ball screw tolerance ISO7 (ISO5 available on request)
- 4 Carriage; with built in Magnets
- 5 Aluminium profile-Hard anodized6 Integrated Linear Ball Guideway
- 7 Central lubrication port; both sides
- 8 End block with fixed bearing (MTV 110 floating bearing)
- 9 Screw support SA

2LR version

- 1 Carriage; with build in right hand ball nut
- 2 Right hand ball screw
- 3 Carriage; with build in left hand ball nut
- 4 Left hand ball screw
- 5 Central screw support fixed
- 6 Screw support SA

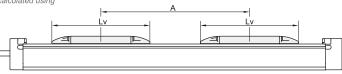

HOW TO ORDER

MTV - 65 -	1610 - ISO7	- 0	- 650 -	2 -	250 -	2SA	2LR
Series :							
MTV							
Size :							
40							
65							
80							
110							
Dellasa							
Ball screw :							
MTV 40: Ø12×5, Ø12×10 MTV 65: Ø16×5, Ø16×10, Ø16>	×16						
MTV 80: Ø20×5, Ø20×10, Ø20×							
MTV 110: Ø32×5, Ø32×10, Ø32							
Ball screw tolerance : —							
ISO7 (Standard)							
ISO5							
Ball screw journal : ——							
0 : Without keyway							
1 : With keyway							
MTV 40 only available w	ithout keyway - 0						
Absolute stroke [mm] : —							
(Absolute stroke = Effective 2LR version: Absolute st.		e)					
2LR Version. Absolute st	roke of one carnage						
Number of carriages : —							
The stated number specifies	the number of carriages	on one Linear	unit (up to 5 ca	rriages avalial	ole)		
Leave blank : For the case							
(Connection between the	carriages must be provid	led by the cust	omer				
Distance between two carr	riages [mm] ·						
Leave blank : For the case							
Leave Marin . For the case	or one carriage						
Number of screw supports (only even integer number -	; n_{SA} : 2, 4, 6, 8, 10SA) - for MT	℃ 40 and 65 m	ax. 4SA is avai	lable			
Leave blank : Without SA							
2LR version : Both right and left ball screw]
	0 00001						

Leave blank : Standard version

Available for: MTV65: 16x5, 16x10 MTV80: 20x5

General technical data



General technical data for double carriage

Linear Unit	Number of	Dynamic	* Dynamic moment			* Max. permissible loads				
	carriages	Load capacity				Forces Moments				
						Fpy	Fpz	Мрх	Мру	Mpz
		C [N]	Mx [Nm]	My [Nm]	Mz [Nm]	[N]	[N]	[Nm]	[Nm]	[Nm]
MTV 40	2	9240	56	4,6 × A	4,6 × A	4600	7690	46	3,8 × A	2,3 × A

*A - Distance between carriages [mm]. More info on following pages.

Presented values are for informational purposes only. Exact values can be calculated using our sizing selection tool on Unimotion web site.

Ball Screw Drive data

Linear Unit	Ball screw	³ Max. rotational speed	¹ Max. travel speed	Lead constant	² Max. Repeatability t precision [mm]		Dynamic Ioad capacity BS	Max. axial Ioad	Max. drive torque	⁴ Min. stroke	¹ Max. acceleration
	[d×l]	(Without SA) [rev / min]	(Without SA) [m / s]	[mm / rev]	STANDARD	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s²]
MTV 40	12 × 5	5800	0,49	5	<u>±</u> 0,02	<u>+</u> 0,01	5000	3400	3,0	30	20
	12 × 10	5800	0,97	10	<u>+</u> 0,02	± 0,01	3800	2540	4,5	30	20

¹ Max. travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

² For the ball nut with the preload of 2%, please contact us.

³ With SA version the max. rotation speed is limited to 3000 rev / min.

⁴ For minimum stroke below the stated value in the table above please contact us.

Planar moment of inertia

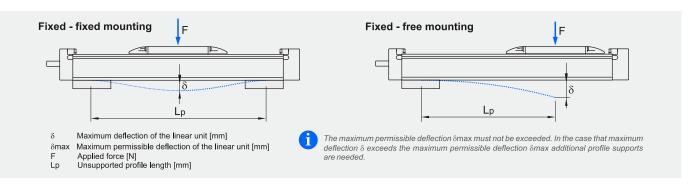
Linear Unit	Planar moment of inertia				
	ly [cm ⁴]	lz [cm ⁴]			
MTV 40	10,0	11,0			

Mass, moved mass, mass moment of inertia and no load torque

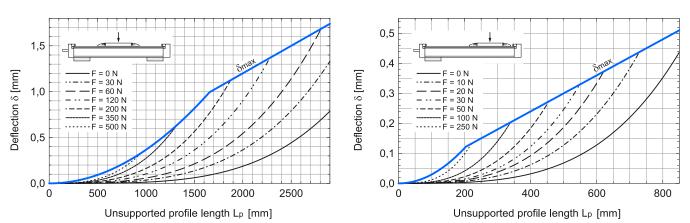
Linear Unit	Ball screw Number of *		* Mass of linear unit	* Moved mass		
	[d×l]	n _{SA}	[kg]	[kg]		
MTV	12 × 5	0	1,2 + 0,0028 × (Abs. stroke + (nc - 1) × A) + 0,47 × (nc - 1)	0,47 + 0,47 × (nc - 1)		
		2	1,3 + 0,0028 × (Abs. stroke + (nc - 1) × A) + 0,47 × (nc - 1)	0,50 + 0,47 × (nc - 1)		
		4	1,4 + 0,0028 × (Abs. stroke + (nc - 1) × A) + 0,47 × (nc - 1)	0,53 + 0,47 × (nc - 1)		
40	12 × 10	0	1,2 + 0,0028 × (Abs. stroke + (nc - 1) × A) + 0,47 × (nc - 1)	0,47 + 0,47 × (nc - 1)		
		2	1,3 + 0,0028 × (Abs. stroke + (nc - 1) × A) + 0,47 × (nc - 1)	0,50 + 0,47 × (nc - 1)		
		4	1,4 + 0,0028 × (Abs. stroke + (nc - 1) × A) + 0,47 × (nc - 1)	0,53 + 0,47 × (nc - 1)		

Linear Unit	Ball screw	Number of SA	* Mass moment of inertia	* No load torque
	[d×l]	n _{SA}	[10 ⁻⁵ kg m ²]	[Nm]
	12 × 5	0	0,48 + 0,0012 × (Abs. stroke + (nc - 1) × A) + 0,03 × (nc - 1)	0,08 + 0,08 × (nc - 1)
		2	0,53 + 0,0012 × (Abs. stroke + (nc - 1) × A) + 0,03 × (nc - 1)	0,09 + 0,08 × (nc - 1)
мτν		4	0,57 + 0,0012 × (Abs. stroke + (nc - 1) × A) + 0,03 × (nc - 1)	0,10 + 0,08 × (nc - 1)
40		0	0,57 + 0,0012 × (Abs. stroke + (nc - 1) × A) + 0,12 × (nc - 1)	0,09 + 0,09 × (nc - 1)
	12 × 10	2	0,62 + 0,0012 × (Abs. stroke + (nc - 1) × A) + 0,12 × (nc - 1)	0,11 + 0,09 × (nc - 1)
		4	0,67 + 0,0012 × (Abs. stroke + (nc - 1) × A) + 0,12 × (nc - 1)	0,14 + 0,09 × (nc - 1)

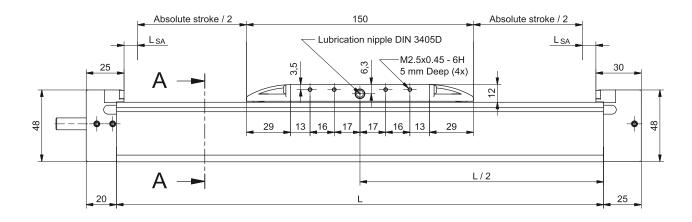
*Absolute stroke [mm]

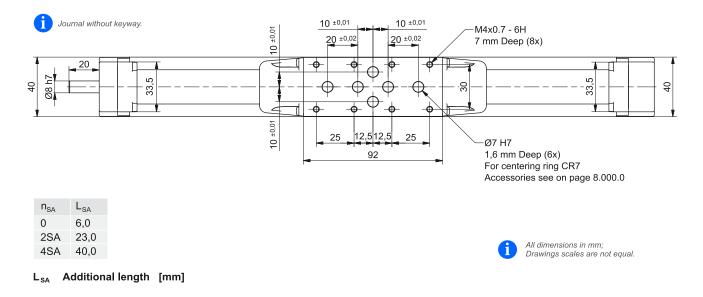

A - Distance between carriages [mm]. More info on following pages.

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

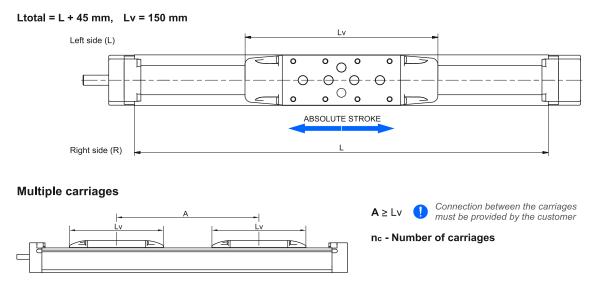

nc - Number of carriages

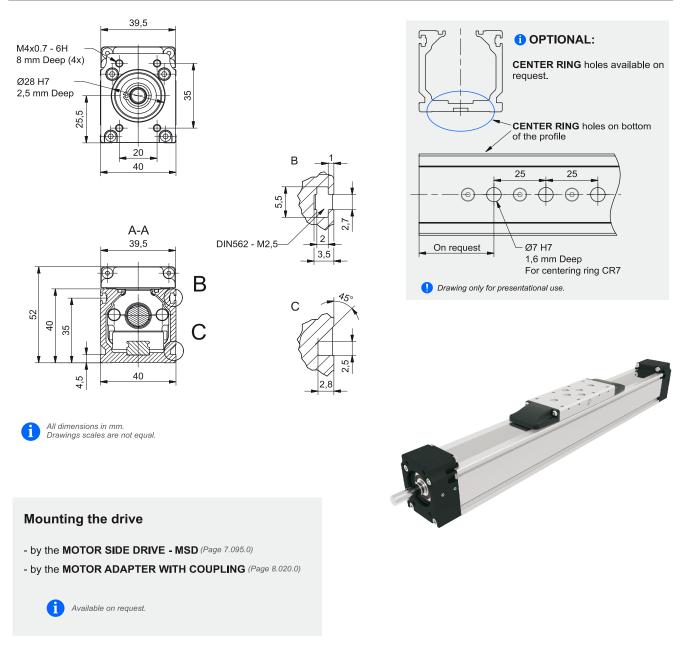
**The stated values are for strokes (and for distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation.

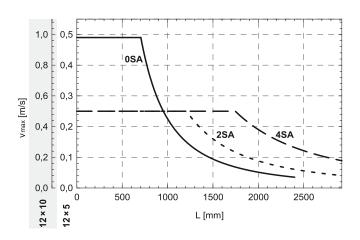

Deflection of the linear unit



MTV 40


Linear Unit doesn't include any safety Absolute stroke = Effective stroke + 2 x Safety stroke stroke.




Defining of the linear unit length

L = Effective stroke + 2 × Safety stroke + Lv + 2 × LsA + A × (nc - 1) + 10 mm

Maximum travel speed as a function of the profile length (Vmax - L curves)

0°C ~ +60°C

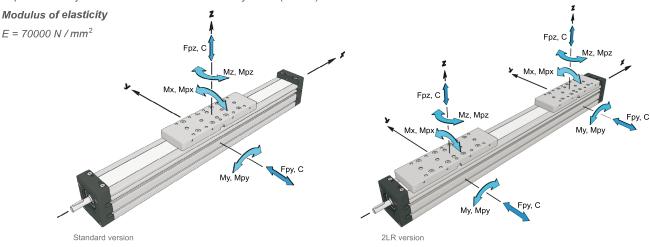
100%

Operating temp.

For operating temperature out of the presented range, please contact us.

Duty cycle

TECHNICAL DATA


General technical data

Linear Unit	Carriage length	i Dynamic	i Dynamic moment		Max. permissible loads					* Max.	* Max. stroke	
		Load capacity				For	ces		Moments		length	Stroke
						Fpy	Fpz	Мрх	Мру	Mpz		
	Lv [mm]	C[N]	M×[Nm]	My [Nm]	Mz [Nm]	[N]	[N]	[Nm]	[Nm]	[Nm]	Lmax [mm]	[mm]
MTV 65	220	19800	158	700	700	6540	10190	94	350	233	2920	2690
MTV 65 2LR	220	19800	158	700	700	6540	10190	94	350	233	5789	2667

*For lengths / stroke over the stated value in the table above please contact us. Values for max. stroke are not valid for multiple carriages and screw support SA (equation of defining the linear unit length for particular size of the linear unit needs to be used).

Recommended values of loads:

All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0)

General technical data for double carriage

Linear Unit	Number of	Dynamic	*	Dynamic moment		* Max. permissible loads				
	carriages	Load capacity				For	ces I		Moments	
		C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fру [N]	Fpz [N]	Mpx [Nm]	М _{РУ} [Nm]	Mpz [Nm]
MTV 65 / MTV 65 2LR	2	39600	316	19,8 × A	19,8 × A	13070	20380	188	10,2 × A	6,5 × A
*A - Distance between o	arriages [mm].	More info on follo	owing pages.				A			
Presented values our sizing selection	are for informa n tool on Unim	tional purposes c otion web site.	only. Exact valu	ies can be calcula	ated using	Lv -		-	Lv -	

Ball Screw Drive data

Linear Unit	Ball screw	³ Max. rotational speed	¹ Max. travel speed	Lead constant	prec	eatability ision ım]	Dynamic load capacity BS	⁵ Max. axial Ioad	Max. drive torque	⁴ Min. stroke	¹ Max. acceleration
	[d×l]	(Without SA) [rev / min]	(Without SA) [m / s]	[mm / rev]	STANDARD	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s ²]
	16 × 5		0,35	5	<u>+</u> 0,02	<u>+</u> 0,01	13150	8700	5,5 with Keyway 7,7 without Keyway		
MTV 65 MTV 65 2LR	16 × 10	4200	0,70	10	<u>+</u> 0,02	<u>±</u> 0,01	11550	6730	5,5 with Keyway	40	20
	16 × 16		1,12	16	<u>±</u> 0,02	<u>+</u> 0,01	8170	4200	11,9 without Keyway		

¹ Max. travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

 $^{\rm 2}$ For the ball nut with the preload of 2%, please contact us.

 3 With SA or 2LR version the max. rotation speed is limited to 3000 rev / min.

⁴ For minimum stroke below the stated value in the table above please contact us.

⁵ In the case of 2RL version the axial load is total axial load of both carriages.

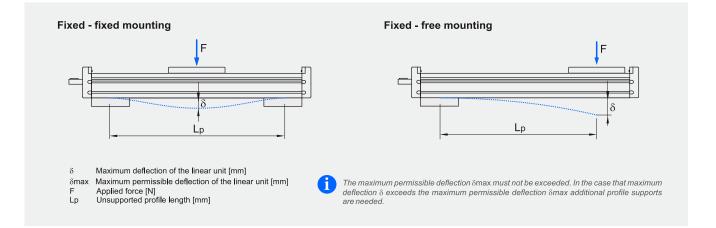
Mass, moved mass, mass moment of inertia and no load torque

Linear Unit	Ball screw	Number of SA	* Mass of linear unit	* Moved mass
	[d×l]	n _{SA}	[kg]	[kg]
		0	4,0 + 0,0073 × (Abs. stroke + (nc - 1) × A) + 1,5 × (nc - 1)	1,50 + 1,50 × (nc - 1)
	16 × 5	2	4,5 + 0,0073 × (Abs. stroke + (nc - 1) × A) + 1,5 × (nc - 1)	1,58 + 1,50 × (nc - 1)
		4	5,0 + 0,0073 × (Abs. stroke + (nc - 1) × A) + 1,5 × (nc - 1)	1,66 + 1,50 × (nc - 1)
	16 × 5	0	7,2 + 0,0146 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,00 + 3,00 × (nc - 1)
	2LR version	2	8,2 + 0,0146 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,16 + 3,00 × (nc - 1)
		4	9,2 + 0,0146 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,32 + 3,00 × (nc - 1)
		0	4,0 + 0,0073 × (Abs. stroke + (nc - 1) × A) + 1,5 × (nc - 1)	1,50 + 1,50 × (nc - 1)
MTV 65	16 × 10	2	4,5 + 0,0073 × (Abs. stroke + (nc - 1) × A) + 1,5 × (nc - 1)	1,58 + 1,50 × (nc - 1)
05		4	5,0 + 0,0073 × (Abs. stroke + (nc - 1) × A) + 1,5 × (nc - 1)	1,66 + 1,50 × (nc - 1)
		0	7,2 + 0,0146 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,00 + 3,00 × (nc - 1)
	16 × 10 2LR version	2	8,2 + 0,0146 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,16 + 3,00 × (nc - 1)
	LERTOIOION	4	9,2 + 0,0146 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,32 + 3,00 × (nc - 1)
		0	4,0 + 0,0073 × (Abs. stroke + (nc - 1) × A) + 1,5 × (nc - 1)	1,50 + 1,50 × (nc - 1)
	16 × 16	2	4,5 + 0,0073 × (Abs. stroke + (nc - 1) × A) + 1,5 × (nc - 1)	1,58 + 1,50 × (nc - 1)
		4	5,0 + 0,0073 × (Abs. stroke + (nc - 1) × A) + 1,5 × (nc - 1)	1,66 + 1,50 × (nc - 1)

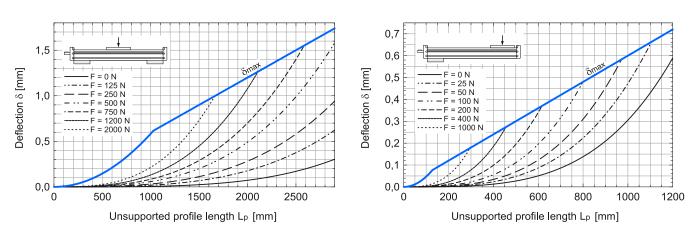
Ball screw	Number of SA	* Mass moment of inertia	* No load torque
[d×l]	n _{SA}	[10 ⁻⁵ kg m ²]	[Nm]
	0	1,6 + 0,0052 × (Abs. stroke + (nc - 1) × A) + 0,09 × (nc - 1)	0,14 + 0,14 × (nc - 1)
16 × 5	2	1,9 + 0,0052 × (Abs. stroke + (nc - 1) × A) + 0,09 × (nc - 1)	0,16 + 0,14 × (nc - 1)
	4	2,2 + 0,0052 × (Abs. stroke + (nc - 1) × A) + 0,09 × (nc - 1)	0,18 + 0,14 × (nc - 1)
10 5	0	2,9 + 0,0104 × (Abs. stroke + (nc - 1) × A) + 0,19 × (nc - 1)	0,28 + 0,28 × (nc - 1)
	2	3,5 + 0,0104 × (Abs. stroke + (nc - 1) × A) + 0,19 × (nc - 1)	0,32 + 0,28 × (nc - 1)
	4	4,1 + 0,0104 × (Abs. stroke + (nc - 1) × A) + 0,19 × (nc - 1)	0,35 + 0,28 × (nc - 1)
	0	1,9 + 0,0052 × (Abs. stroke + (nc - 1) × A) + 0,38 × (nc - 1)	0,15 + 0,15 × (nc - 1)
16 × 10	2	2,2 + 0,0052 × (Abs. stroke + (nc - 1) × A) + 0,38 × (nc - 1)	0,19 + 0,15 × (nc - 1)
	4	2,5 + 0,0052 × (Abs. stroke + (nc - 1) × A) + 0,38 × (nc - 1)	0,22 + 0,15 × (nc - 1)
	0	3,5 + 0,0104 × (Abs. stroke + (nc - 1) × A) + 0,76 × (nc - 1)	0,30 + 0,30 × (nc - 1)
	2	4,1 + 0,0104 × (Abs. stroke + (nc - 1) × A) + 0,76 × (nc - 1)	0,34 + 0,30 × (nc - 1)
LERVEISION	4	4,8 + 0,0104 × (Abs. stroke + (nc - 1) × A) + 0,76 × (nc - 1)	0,37 + 0,30 × (nc - 1)
	0	2,5 + 0,0052 × (Abs. stroke + (nc - 1) × A) + 0,97 × (nc - 1)	0,20 + 0,20 × (nc - 1)
16 × 16	2	2,8 + 0,0052 × (Abs. stroke + (nc - 1) × A) + 0,97 × (nc - 1)	0,26 + 0,20 × (nc - 1)
	4	3,2 + 0,0052 × (Abs. stroke + (nc - 1) × A) + 0,97 × (nc - 1)	0,31 + 0,20 × (nc - 1)
	[d × 1] 16 × 5 2LR version 16 × 10 2LR version	$ \begin{array}{c c} SA \\ n_{SA} \\ 0 \\ 16 \times 5 \\ 2LR version \\ 16 \times 10 \\ 2LR version \\ 10 \\ $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

*Absolute stroke [mm] A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages

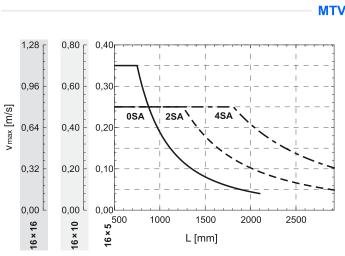
Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.


**The stated values are for strokes (and for distances between the carriages A) up to 500mm.

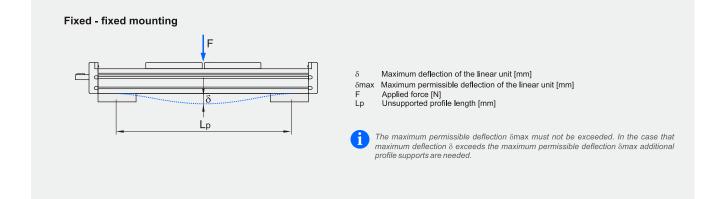
No Load Torque value increases with stroke (and with A) elongation.

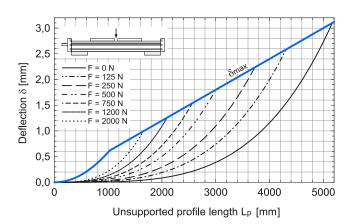

Planar moment of inertia

Linear Unit		oment of rtia			
	ly [cm ⁴] lz [cm ⁴]				
MTV 65 MTV 65 2LR	71,3	89,4			

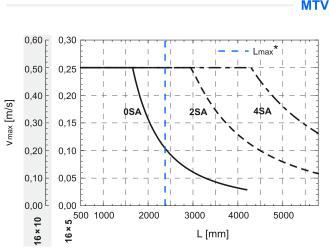

Deflection of the linear unit

MTV 65

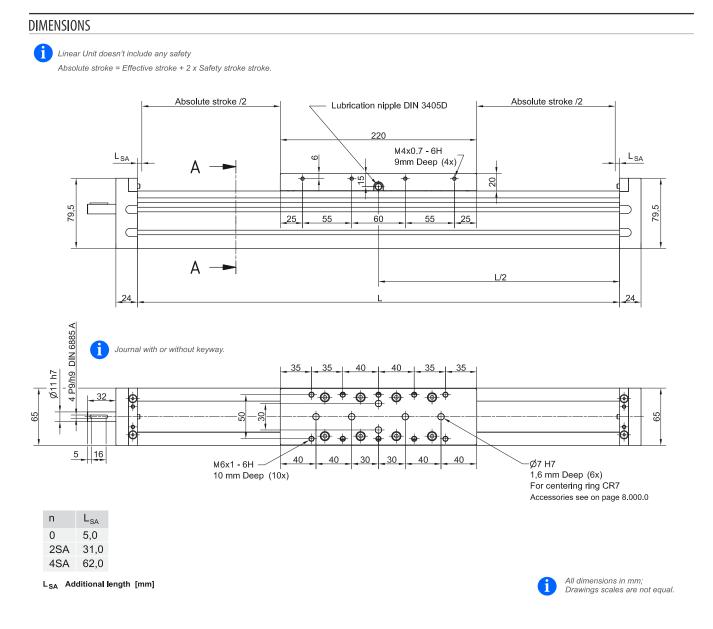




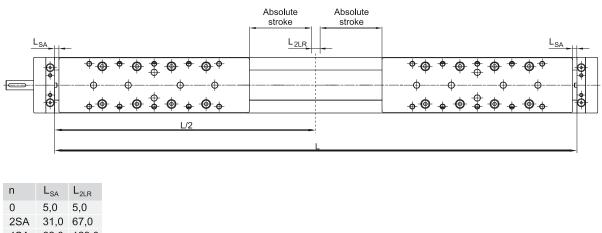
MTV 65 -


Deflection of the 2LR version

MTV 65 2LR

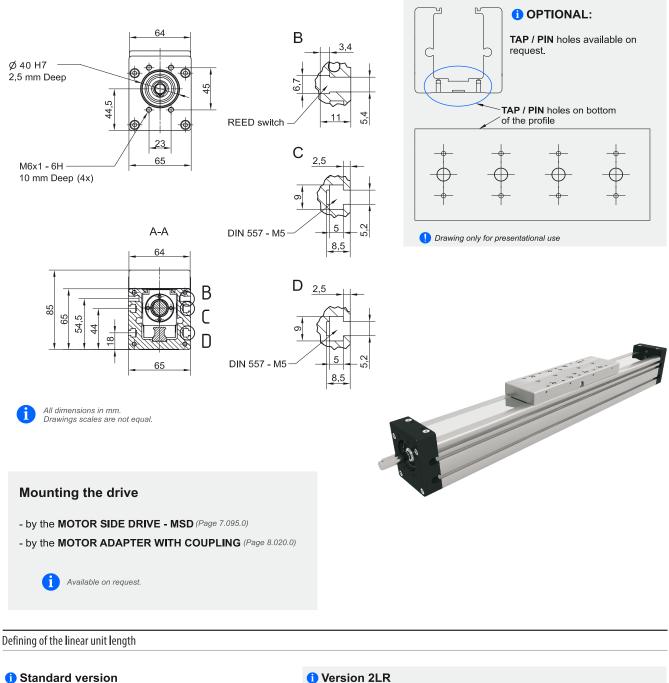


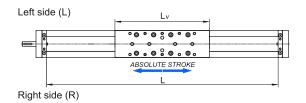
Maximum travel speed as a function of the profile length (Vmax - L curves)



* Max. length Lmax of MTV 65 2LR linear unit with 16x10 ball screw.

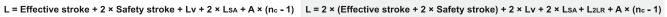
- MTV 65 2LR

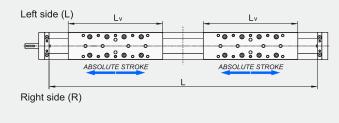

2LR version

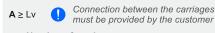

4SA 62,0 129,0

L_{SA} Additional length [mm]

 $\rm L_{2LR}\,$ Min. distance between carriages $\,[$ mm]


Ltotal = L + 48 mm, Lv = 220 mm


Multiple carriages


1 Version 2LR

Ltotal = L + 48 mm, Lv = 220 mm

Multiple carriages

nc - Number of carriages

0°C ~ +60°C

100%

Operating conditions Operating temp.

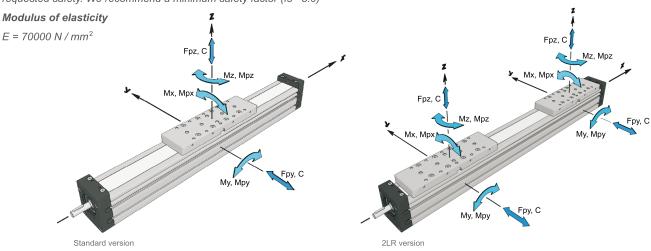
For operating temperature out of the

presented range, please contact us.

Duty cycle

TECHNICAL DATA

General technical data


Linear Unit	Carriage length	 Dynamic Load capacity 	 Dynamic moment 		Max. permissible loads Forces Moments					* Max. length	* Max. stroke	
	Lv [mm]	C[N]	M×[Nm]	My [Nm]	Mz [Nm]	Fру [N]	Fpz [N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]	Lmax [mm]	[mm]
MTV 80	290	34200	370	1470	1470	8930	15070	150	500	384	5480	5163
MTV 80 2LR	290	34200	370	1470	1470	8930	15070	150	500	384	11055	5224

 * For lengths / stroke over the stated value in the table above please contact us.

Values for max, stroke are not valid for multiple carriages and screw support SA (equation of defining the linear unit length for particular size of the linear unit needs to be used).

Recommended values of loads:

All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0)

General technical data for double carriage

Linear Unit	Number of	Dynamic	*	Dynamic mom	ient	*	Max	. permissible	loads	
	carriages	Load capacity				For	ces		Moments	
		C[N]	M× [Nm]	My [Nm]	Mz [Nm]	Fру [N]	Fpz [N]	Mpx [Nm]	М _{ру} [Nm]	Mpz [Nm]
MTV 80 / MTV 80 2LR	2	68400	740	34,2 × A	34,2 × A	17860	30130	300	15,0 × A	8,9 × A
*A - Distance between c Presented values our sizing selection	are for informa	tional purposes o		es can be calcula	ted using		A	-		

Ball Screw Drive data

Linear Unit	Ball screw	³ Max. rotational speed	¹ Max. travel speed	Lead constant	prec	eatability ision m]	Dynamic load capacity BS	⁵ Max. axial Ioad	Max. drive torque	⁴ Min. stroke	¹ Max. acceleration
	[d×l]	(Without SA) [rev / min]	(Without SA) [m / s]	[mm / rev]	STANDARD	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s ²]
MTV 80	20 × 5	0000	0,28	5	<u>+</u> 0,02	<u>±</u> 0,01	14800	14800	11,9 with Keyway 13,0 without Keyway		
MTV 80 2LR	20 × 10	3300	0,55	10	<u>+</u> 0,02	± 0,01	15900	13850	11,9	55	20
	20 × 20		1,10	20	<u>+</u> 0,02	<u>±</u> 0,01	16250	6930	with Keyway 24,5		
	20 × 50	3000	2,50	50	<u>+</u> 0,02	± 0,01	13000	2770	without Keyway		

¹ Max. travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

 $^{\rm 2}$ For the ball nut with the preload of 2%, please contact us.

³ With SA or 2LR version the max. rotation speed is limited to 3000 rev / min.

⁴ For minimum stroke below the stated value in the table above please contact us.

⁵ In the case of 2RL version the axial load is total axial load of both carriages.

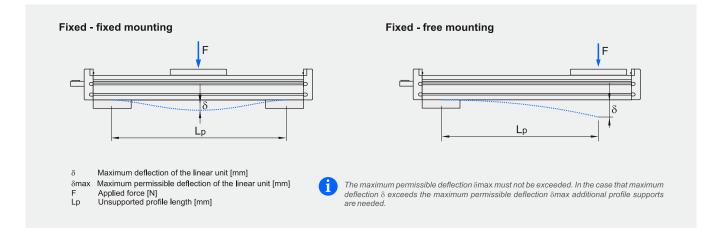
Mass, moved mass, mass moment of inertia and no load torque

Linear Unit	Ball screw	Number of SA	* Mass of linear unit	* Moved mass
	[d×l]	n _{SA}	[kg]	[kg]
		0	8,2 + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,00 + 3,00 × (nc - 1)
	20 × 5	2	8,9 + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,07 + 3,00 × (nc - 1)
		4 / 6 / 8 / 10	9,7 + 0,4 * (n _{SA} - 4) + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,21 + 0,035 * (n _{SA} - 4) + 3,00 × (nc - 1)
	00 × 5	0	14,6 + 0,0228 × (Abs. stroke + (nc - 1) × A) + 6,0 × (nc - 1)	6,00 + 6,00 × (nc - 1)
	20 × 5 2LR version	2	15,9 + 0,0228 × (Abs. stroke + (nc - 1) × A) + 6,0 × (nc - 1)	6,14 + 6,00 × (nc - 1)
		4 / 6 / 8 / 10	17,6 + 0,8 * (n _{SA} - 4) + 0,0228 × (Abs. stroke + (nc - 1) × A) + 6,0 × (nc - 1)	6,42 + 0,07 * (n _{SA} - 4) + 6,00 × (nc - 1)
		0	8,2 + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,00 + 3,00 × (nc - 1)
MTV 80	20 × 10	2	8,9 + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,07 + 3,00 × (nc - 1)
00		4 / 6 / 8 / 10	9,7 + 0,4 * (n _{SA} - 4) + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,21 + 0,035 * (n _{SA} - 4) + 3,00 × (nc - 1)
		0	8,2 + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,00 + 3,00 × (nc - 1)
	20 × 20	2	8,9 + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,07 + 3,00 × (nc - 1)
		4/6/8/10	9,7 + 0,4 * (n _{SA} - 4) + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,21 + 0,035 * (n _{SA} - 4) + 3,00 × (nc - 1)
		0	8,2 + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,00 + 3,00 × (nc - 1)
	20 × 50	2	8,9 + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,07 + 3,00 × (nc - 1)
		4/6/8/10	9,7 + 0,4 * (n _{SA} - 4) + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,21 + 0,035 * (n _{SA} - 4) + 3,00 × (nc - 1)

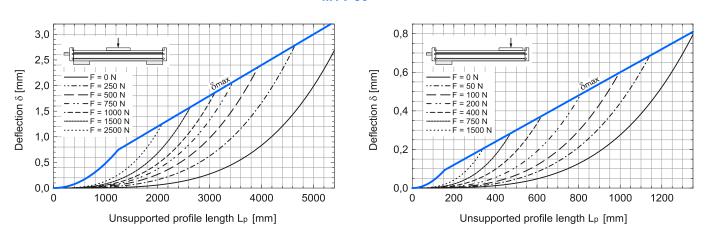
Linear Unit	Ball screw	Number of SA	* Mass moment of inertia	* ** No load torque
O III	[d×l]	n _{SA}	[10 ⁻⁵ kg m ²]	[Nm]
		0	5,6 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 0,19 × (nc - 1)	0,23 + 0,23 × (nc - 1)
	20 × 5	2	6,2 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 0,19 × (nc - 1)	0,26 + 0,23 × (nc - 1)
		4/6/8/10	7,0 + 0,4 * (n _{sA} - 4) + 0,0127 × (Abs. stroke + (nc - 1) × A) + 0,19 × (nc - 1)	0,31 + 0,015 * (n _{SA} - 4) + 0,23 × (nc - 1)
		0	9,5 + 0,0254 × (Abs. stroke + (nc - 1) × A) + 0,38 × (nc - 1)	0,46 + 0,46 × (nc - 1)
	20 × 5 2LR version	2	10,7 + 0,0254 × (Abs. stroke + (nc - 1) × A) + 0,38 × (nc - 1)	0,51 + 0,46 × (nc - 1)
		4/6/8/10	12,3 + 0,8 * (n _{SA} - 4) + 0,0254 × (Abs. stroke + (nc - 1) × A) + 0,38 × (nc - 1)	0,62 + 0,03 * (n _{SA} - 4) + 0,46 × (nc - 1)
		0	6,2 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 0,76 × (nc - 1)	0,25 + 0,25 × (nc - 1)
MTV	20 × 10	2	6,8 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 0,76 × (nc - 1)	0,30 + 0,25 × (nc - 1)
80		4 / 6 / 8 / 10	7,6 + 0,4 * (n _{SA} - 4) + 0,0127 × (Abs. stroke + (nc - 1) × A) + 0,76 × (nc - 1)	0,41 + 0,025 * (n _{SA} - 4) + 0,25 × (nc - 1)
		0	8,5 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 3,04 × (nc - 1)	0,30 + 0,30 × (nc - 1)
	20 × 20	2	9,1 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 3,04 × (nc - 1)	0,41 + 0,30 × (nc - 1)
		4/6/8/10	10,1 + 0,5 * (n _{SA} - 4) + 0,0127 × (Abs. stroke + (nc - 1) × A) + 3,04 × (nc - 1)	0,62 + 0,055 * (n _{SA} - 4) + 0,30 × (nc - 1)
		0	24,4 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 19,00 × (nc - 1)	0,70 + 0,70 × (nc - 1)
	20 × 50	2	25,5 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 19,00 × (nc - 1)	0,97 + 0,70 × (nc - 1)
		4/6/8/10	27,1 + 0,6 * (n _{SA} - 4) + 0,0127 × (Abs. stroke + (nc - 1) × A) + 19,00 × (nc - 1)	1,50 + 0,135 * (n _{SA} - 4) + 0,70 × (nc - 1)

A

*Absolute stroke [mm] A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages


Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

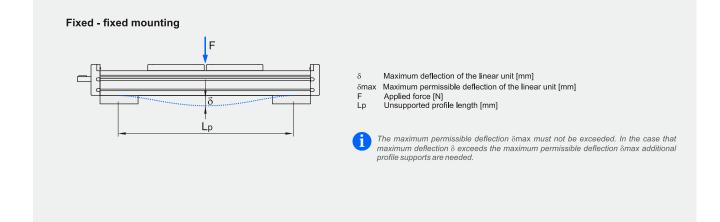
**The stated values are for strokes (and for distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation.


Planar moment of inertia

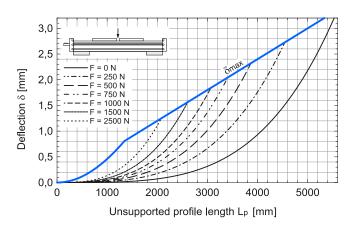
Linear Unit	Planar m ine ly [cm ⁴]	oment of rtia Iz [cm ⁴]
MTV 80 MTV 80 2LR	144,1	192,3


Deflection of the linear unit

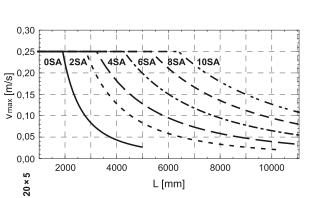
MTV 80



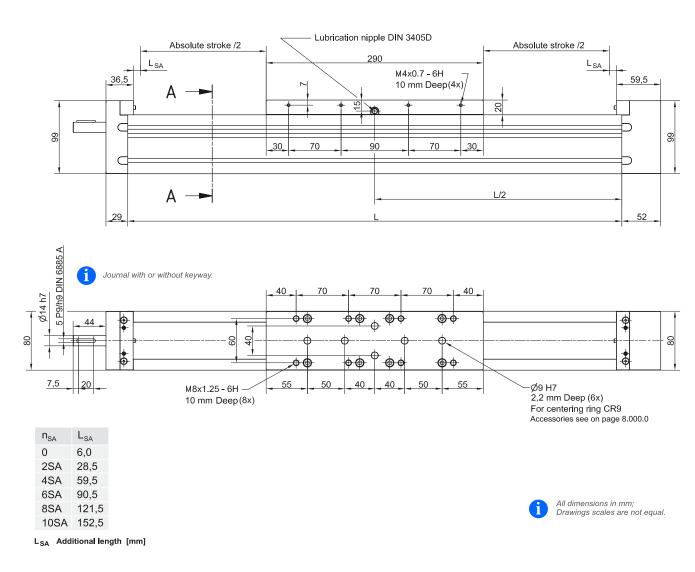
Maximum travel speed as a function of the profile length (Vmax - L curves)

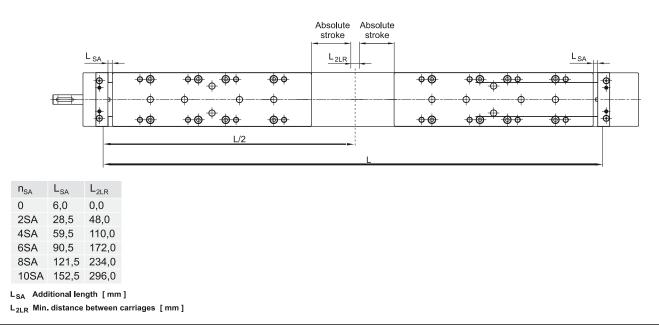


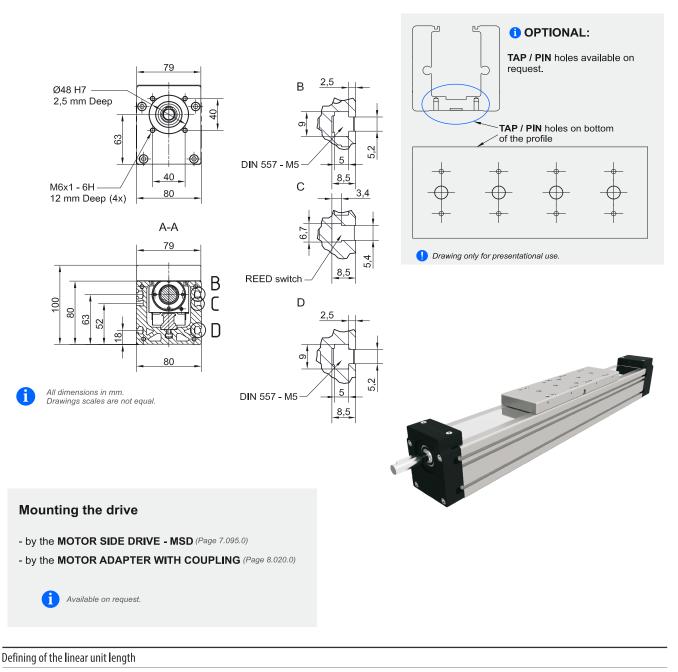
* Max. length Lmax of MTV 80 linear unit with 20x10 ball screw.


Deflection of the 2LR version

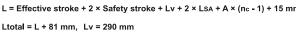
MTV 80 2LR

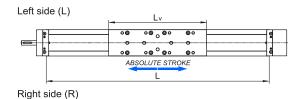

Maximum travel speed as a function of the profile length (Vmax - L curves)


MTV 80 2LR

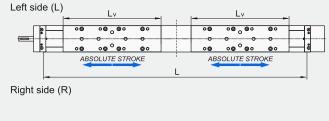


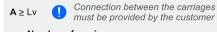
include any safety Absolute stroke = Effective stroke + 2 x Safety stroke stroke.


2LR Version

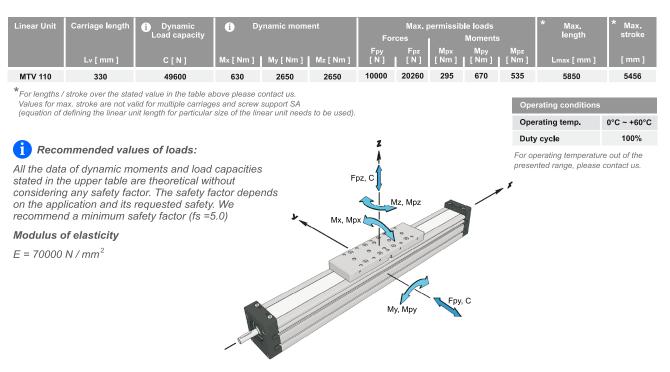


1 Standard version





L = Effective stroke + 2 × Safety stroke + Lv + 2 × LsA + A × (nc - 1) + 15 mm L = 2 × (Effective stroke + 2 × Safety stroke) + 2 × Lv + 2 × LsA + L2LR + A × (nc - 1) + 15 mm Ltotal = L + 81 mm, Lv = 290 mm



Multiple carriages

nc - Number of carriages

General technical data



General technical data for double carriage

Linear Unit	Number of	Dynamic	*	Dynamic mon	*	Max	k. permissible	e loads		
	carriages	Load capacity				For	ces		Moments	
						Fpy	Fpz	Мрх	Мру	Mpz
		C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	[N]	[N]	[Nm]	[Nm]	[Nm]
MTV 110	2	99200	1260	49,6 × A	49,6 × A	20000	40500	590	20,3 × A	10,0 × A

*A - Distance between carriages [mm]. More info on following pages.

Presented values are for informational purposes only. Exact values can be calculated using our sizing selection tool on Unimotion web site.

Ball Screw Drive data

i

Linear Unit	Ball screw	³ Max. rotational speed	¹ Max. travel speed	Lead constant	prec	eatability ision m]	Dynamic Ioad capacity BS	Max. axial Ioad	Max. drive torque	⁴ Min. stroke	¹ Max. acceleration
	[d×l]	(Without SA) [rev / min]	(Without SA) [m / s]	[mm / rev]	STANDARD	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s ²]
	32 × 5	2150	0,18	5	<u>+</u> 0,02	± 0,01	18850	18850	16,7 with Keyway 16,7 without Keyway	65	
MTV 110	32 × 10		0,50	10	<u>+</u> 0,02	<u>+</u> 0,01	37000	29600	27,3	65	20
	32 × 20	3000	1,00	20	± 0,02	<u>+</u> 0,01	22950	14800	with Keyway 52,3		
	32 × 32		1,60	32	<u>+</u> 0,02	<u>†</u> 0,01	15500	9240	without Keyway	70	

¹ Max. travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

² For the ball nut with the preload of 2%, please contact us.

³ With SA the max. rotation speed is limited to 3000 rev / min.

⁴ For minimum stroke below the stated value in the table above please contact us.

Planar moment of inertia

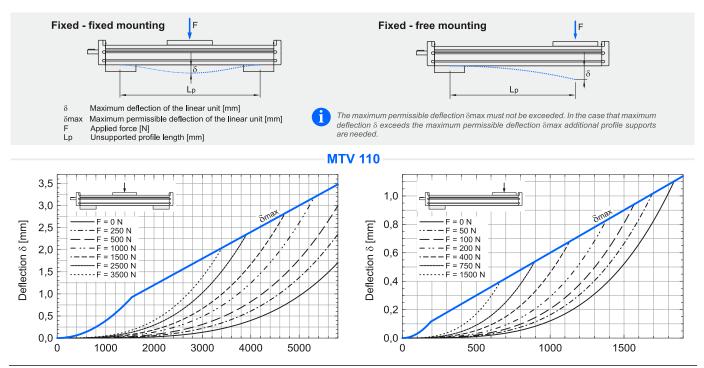
Linear Unit		oment of rtia
	ly [cm ⁴]	lz [cm ⁴]
MTV 110	562,0	669,0

Mass, moved mass, mass moment of inertia and no load torque

Linear Unit	Ball screw	Number of SA	* Mass of linear unit	* Moved mass
Onit	[d×l]	n _{SA}	[kg]	[kg]
		0	17,3 + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	4,90 + 4,90 × (nc - 1)
	32 × 5	2	17,7 + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	5,03 + 4,90 × (nc - 1)
		4/6/8/10	19,3 + 0,8 * (n _{SA} - 4) + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	5,29 + 0,065 * (n _{sA} - 4) + 4,90 × (nc - 1)
		0	17,3 + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	4,90 + 4,90 × (nc - 1)
	32 × 10	2	17,7 + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	5,03 + 4,90 × (nc - 1)
мτν		4 / 6 / 8 / 10	19,3 + 0,8 * (n _{SA} - 4) + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	5,29 + 0,065 * (n _{sa} - 4) + 4,90 × (nc - 1)
110		0	17,3 + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	4,90 + 4,90 × (nc - 1)
	32 × 20	2	17,7 + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	5,03 + 4,90 × (nc - 1)
		4 / 6 / 8 / 10	19,3 + 0,8 * (n _{SA} - 4) + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	5,29 + 0,065 * (n _{sA} - 4) + 4,90 × (nc - 1)
		0	17,3 + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	4,90 + 4,90 × (nc - 1)
	32 × 32	2	17,7 + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	5,03 + 4,90 × (nc - 1)
		4/6/8/10	19,3 + 0,8 * (n _{SA} - 4) + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	5,29 + 0,065 * (n _{sa} - 4) + 4,90 × (nc - 1)

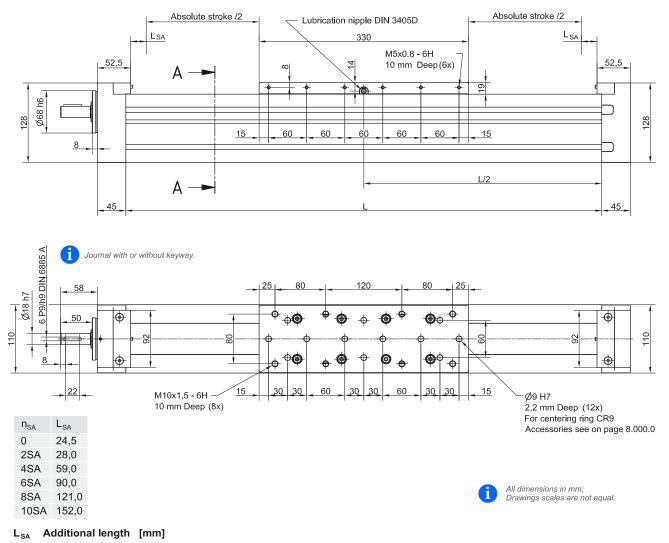
Linear Unit	Ball screw [d × I]	Number of SA n _{SA}	* Mass moment of inertia [10 ⁻⁵ kg m ²]	* No load torque [Nm]
		0	34,6 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 0,31 × (nc - 1)	0,60 + 0,60 × (nc - 1)
	32 × 5	2	35,1 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 0,31 × (nc - 1)	0,67 + 0,60 × (nc - 1)
		4 / 6 / 8 / 10	39,4 + 2,2 * (n _{SA} - 4) + 0,0690 × (Abs. stroke + (nc - 1) × A) + 0,31 × (nc - 1)	0,81 + 0,035 * (n _{SA} - 4) + 0,60 × (nc - 1)
		0	35,5 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 1,24 × (nc - 1)	0,70 + 0,70 × (nc - 1)
	32 × 10	2	36,1 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 1,24 × (nc - 1)	0,84 + 0,70 × (nc - 1)
MTV		4/6/8/10	40,4 + 2,2 * (n _{SA} - 4) + 0,0690 × (Abs. stroke + (nc - 1) × A) + 1,24 × (nc - 1)	1,12 + 0,070 * (n _{SA} - 4) + 0,70 × (nc - 1)
110		0	39,3 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 4,96 × (nc - 1)	0,75 + 0,75 × (nc - 1)
	32 × 20	2	39,9 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 4,96 × (nc - 1)	1,03 + 0,75 × (nc - 1)
		4 / 6 / 8 / 10	44,4 + 2,2 * (n _{SA} - 4) + 0,0690 × (Abs. stroke + (nc - 1) × A) + 4,96 × (nc - 1)	1,60 + 0,140 * (n _{sa} - 4) + 0,75 × (nc - 1)
		0	47,0 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 12,71 × (nc - 1)	0,80 + 0,80 × (nc - 1)
	32 × 32	2	47,8 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 12,71 × (nc - 1)	1,25 + 0,80 × (nc - 1)
		4/6/8/10	52,8 + 2,3 * (n _{SA} - 4) + 0,0690 × (Abs. stroke + (nc - 1) × A) + 12,71 × (nc - 1)	2,16 + 0,225 * (n _{SA} - 4) + 0,80 × (nc - 1)

H)

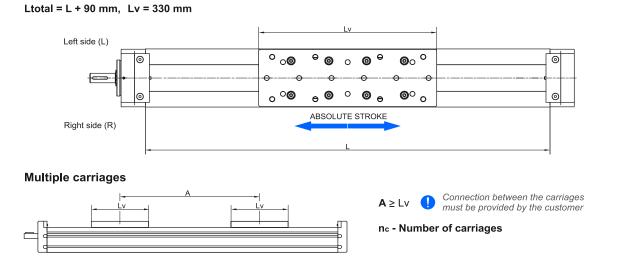

*Absolute stroke [mm]

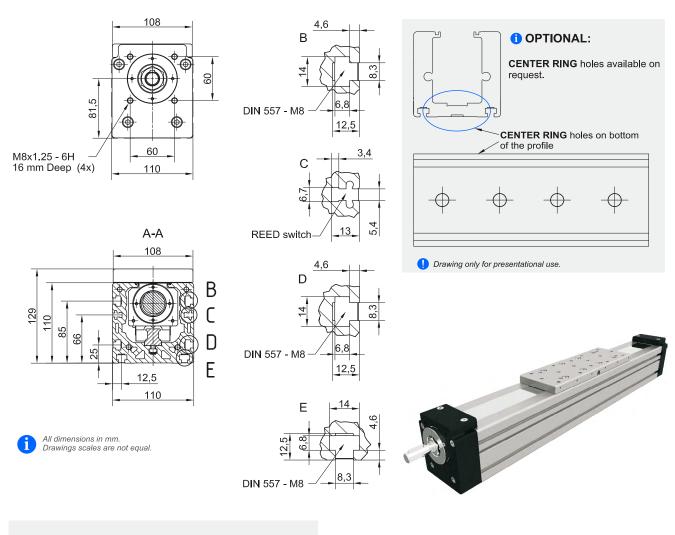
A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages

**The stated values are for strokes (and for distances between the carriages A) up to 500mm.


No Load Torque value increases with stroke (and with A) elongation.

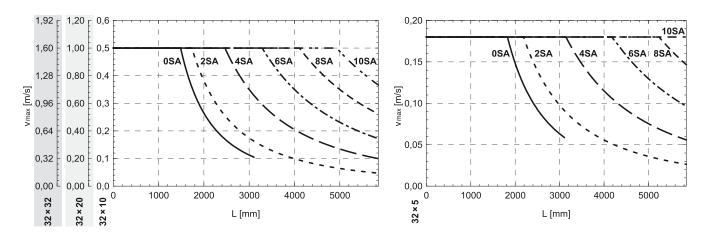
Deflection of the linear unit


Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.


Linear Unit doesn't include any safety Absolute stroke = Effective stroke + 2 x Safety stroke stroke.

Defining of the linear unit length

L = Effective stroke + 2 × Safety stroke + Lv + 2 × LsA + A × (nc - 1) + 15 mm



Mounting the drive

- by the MOTOR SIDE DRIVE MSD (Page 7.095.0)
- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

Available on request.

Maximum travel speed as a function of the profile length (Vmax - L curves)

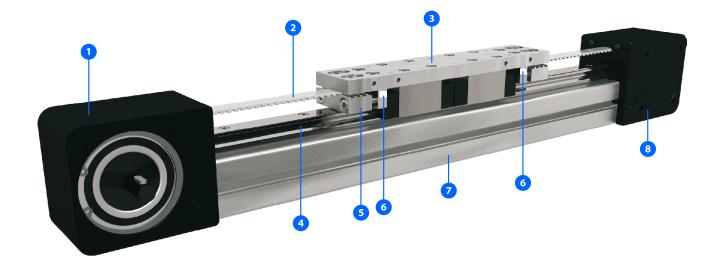
CHARACTERISTICS

The **MTJ ECO** series Linear Unit is a powerful and cost-effective Linear Unit with toothed belt drive and a Zero-backlash Ball rail guide system for easy and accurate linear movements.

It can easily be combined to multi-axis systems.

Excellent price-/performance ratio and quick delivery time are ensured.

An extruded aluminum Profile from 6063 AL with on it mounted Zero-backlash Ball rail guide system, allows high load capacities and optimal cycles for the movement of larger masses at high speed. The linear unit MTJ ECO uses a pre-tensioned steel reinforced AT polyurethane timing toothed belt. In conjunction with a Zero-backlash drive pulley high moments with alternating loads with good positioning accuracy, low wear and low noise can be realized.


The aluminum Profile includes T-slots for fixing the Linear Unit and for attaching sensors and switches . Different carriage lengths of the Linear Unit allow the possibility to attach additional accessories on the side.

Lubrication holes on the carriage allow easy re-lubrication of the Ball rail guide . For the linear unit MTJ ECO various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.

 The aluminium profiles are manufactured according to the medium EN 12020-2 standard Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2 mm

STRUCTURAL DESIGN

- 1 Drive block with pulley
 2 AT polyurethane toothed belt with steel tension cords
 3 Carriage

- 4 Linear Ball Guideway
 5 Belt Tensioning system
 6 Lubrication port
- 7 Aluminium profile-Hard anodized
- 8 End block

HOW TO ORDER

MTJ - 40 - ECO - 700 - L2 - 3 Series :	
MTJ Size :	00 - 10R
MTJ Size :	
MTJ Size : 40 Type : ECO Absolute stroke [mm] : (Absolute stroke = Effective stroke + 2 x Safety stroke) Carriage Version : S : Short L : Long Number of carriages : The stated number specifies the number of carriages on one Linear unit (up to 5 carriages available) Leave blank : For the case of one carriage Distance between two carriages [mm] : Leave blank : For the case of one carriage Type of drive pulley : 0: Pulley with through hole 1: Pulley with through hole 1: Pulley with journal 10: Pulley with journal (without Keyway) 2: Pulley with journal on both sides	
MTJ Size :	
Size :	
40 Type : ECO Absolute stroke [mm] : (Absolute stroke = Effective stroke + 2 x Safety stroke) Carriage Version : S : Short L : Long Number of carriages : The stated number specifies the number of carriages on one Linear unit (up to 5 carriages available) Leave blank : For the case of one carriage Distance between two carriages [mm] : Leave blank : For the case of one carriage Type of drive pulley : 0 : Pulley with through hole 1 : Pulley with journal 10 : Pulley with journal on both sides	
40 Type : ECO Absolute stroke [mm] : (Absolute stroke = Effective stroke + 2 x Safety stroke) Carriage Version : S : Short L : Long Number of carriages : The stated number specifies the number of carriages on one Linear unit (up to 5 carriages available) Leave blank : For the case of one carriage Distance between two carriages [mm] : Leave blank : For the case of one carriage Type of drive pulley : 0: Pulley with through hole 1: Pulley with journal 10 : Pulley with journal 11 : Pulley with journal 12 : Pulley with journal 12 : Pulley with journal	
ECO Absolute stroke [mm] : (Absolute stroke = Effective stroke + 2 x Safety stroke) Carriage Version : S : Short L : Long Number of carriages : The stated number specifies the number of carriages on one Linear unit (up to 5 carriages available) Leave blank : For the case of one carriage Distance between two carriages [mm] : Leave blank : For the case of one carriage Type of drive pulley : 0 : Pulley with through hole 1 : Pulley with journal 10 : Pulley with journal (without Keyway) 2 : Pulley with journal on both sides	
ECO Absolute stroke [mm] : (Absolute stroke = Effective stroke + 2 x Safety stroke) Carriage Version : S : Short L : Long Number of carriages : The stated number specifies the number of carriages on one Linear unit (up to 5 carriages available) Leave blank : For the case of one carriage Distance between two carriages [mm] : Leave blank : For the case of one carriage Type of drive pulley : 0 : Pulley with through hole 1 : Pulley with journal 10 : Pulley with journal (without Keyway) 2 : Pulley with journal on both sides	
Absolute stroke [mm] : (Absolute stroke = Effective stroke + 2 x Safety stroke) Carriage Version : S : Short L : Long Number of carriages : The stated number specifies the number of carriages on one Linear unit (up to 5 carriages available) Leave blank : For the case of one carriage Distance between two carriages [mm] : Leave blank : For the case of one carriage Type of drive pulley : 0 : Pulley with through hole 1 : Pulley with journal 10 : Pulley with journal (without Keyway) 2 : Pulley with journal on both sides	
(Absolute stroke = Effective stroke + 2 x Safety stroke) Carriage Version : S : Short L : Long Number of carriages : The stated number specifies the number of carriages on one Linear unit (up to 5 carriages avaliable) Leave blank : For the case of one carriage Distance between two carriages [mm] : Leave blank : For the case of one carriage Type of drive pulley : 0 : Pulley with through hole 1 : Pulley with journal 10 : Pulley with journal (without Keyway) 2 : Pulley with journal on both sides	
(Absolute stroke = Effective stroke + 2 x Safety stroke) Carriage Version : S : Short L : Long Number of carriages : The stated number specifies the number of carriages on one Linear unit (up to 5 carriages avaliable) Leave blank : For the case of one carriage Distance between two carriages [mm] : Leave blank : For the case of one carriage Type of drive pulley : 0 : Pulley with through hole 1 : Pulley with journal 10 : Pulley with journal (without Keyway) 2 : Pulley with journal on both sides	
Carriage Version :	
S : Short L : Long Number of carriages :	
L : Long Number of carriages :	
Number of carriages : The stated number specifies the number of carriages on one Linear unit (up to 5 carriages avaliable) Leave blank : For the case of one carriage Distance between two carriages [mm] : Leave blank : For the case of one carriage Type of drive pulley : 0: Pulley with through hole 1: Pulley with journal 10: Pulley with journal (without Keyway) 2: Pulley with journal on both sides	
The stated number specifies the number of carriages on one Linear unit (up to 5 carriages available) Leave blank : For the case of one carriage Distance between two carriages [mm] : Leave blank : For the case of one carriage Type of drive pulley : 0 : Pulley with through hole 1 : Pulley with journal 10 : Pulley with journal (without Keyway) 2 : Pulley with journal on both sides	
The stated number specifies the number of carriages on one Linear unit (up to 5 carriages available) Leave blank : For the case of one carriage Distance between two carriages [mm] : Leave blank : For the case of one carriage Type of drive pulley : 0 : Pulley with through hole 1 : Pulley with journal 10 : Pulley with journal (without Keyway) 2 : Pulley with journal on both sides	
Leave blank : For the case of one carriage Distance between two carriages [mm] : Leave blank : For the case of one carriage Type of drive pulley : 0 : Pulley with through hole 1 : Pulley with journal 10 : Pulley with journal (without Keyway) 2 : Pulley with journal on both sides	
Distance between two carriages [mm] : Leave blank : For the case of one carriage Type of drive pulley : 0 : Pulley with through hole 1 : Pulley with journal 10 : Pulley with journal (without Keyway) 2 : Pulley with journal on both sides	
Leave blank : For the case of one carriage Type of drive pulley : 0 : Pulley with through hole 1 : Pulley with journal 10 : Pulley with journal (without Keyway) 2 : Pulley with journal on both sides	
Leave blank : For the case of one carriage Type of drive pulley : 0 : Pulley with through hole 1 : Pulley with journal 10 : Pulley with journal (without Keyway) 2 : Pulley with journal on both sides	
Type of drive pulley : 0: Pulley with through hole 1: Pulley with journal 10: Pulley with journal (without Keyway) 2: Pulley with journal on both sides	
 0: Pulley with through hole 1: Pulley with journal 10: Pulley with journal (without Keyway) 2: Pulley with journal on both sides 	
 Pulley with journal Pulley with journal (without Keyway) Pulley with journal on both sides 	
10 : Pulley with journal (without Keyway)2 : Pulley with journal on both sides	
2 : Pulley with journal on both sides	
20 : Pulley with journal on both sides (without Keyway)	
3: Without drive unit	
Drive journal position:————————————————————————————————————	
L: Journal on left side	

R : Journal on right side

Leave blank : For type of drive pulley 0, 2, 20 and 3

0°C ~ +60°C

100%

Operating condition

For operating temperature out of the

presented range, please contact us.

Operating temp.

Duty cycle

Fpy C

My, Mpy

TECHNICAL DATA

General technical data

Linear Unit	Carriage Iength	i Dynamic Ioad capacity	i	Dynamic moment		Eor	Max.	permissil	ble loads Moments		Moved mass	Max. Repeatability	* Max. * Max. length stroke		** Min. stroke
	Lv [mm]	C[N]	Mx [Nm]	Му [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	[kg]	[mm]	Lmax [mm]	[mm]	[mm]
MTJ 40 ECO S	132	9900	79	59	59	3270	5100	34	34	34	0,45	<u>+</u> 0,1	5000	5813	40
MTJ 40 ECO L	200	19800	158	660	660	6540	10190	60	341	219	0,72	<u>+</u> 0,1	5960	5745	40

Fpz, C

Mx. Mpx

m *For lengths / stroke over the stated value in the table above please contact us.

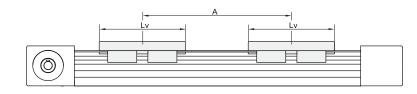
Values for max, stroke are not valid for multiple carriages (equation of defining the linear unit length for particular size of the linear unit needs to be used).

**For minimum stroke below the stated value in the table above please contact us.

Recommended values of loads

All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0)

Modulus of elasticity


E = 70000 N / mm²

General technical data for double carriage

Linear Unit	Carriage	Dynamic	*	* Max. permissible loads							
	version	load capacity					ces		Moments		
		C[N]	M× [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]	
	S2	19800	158	9,9 × A	9,9 × A	6540	10190	68	5,1 × A	3,3 × A	
MTJ 40 ECO	L2	39600	317	19,8 × A	19,8 × A	13080	20380	120	10,2 × A	6,5 × A	

*A - Distance between carriages [mm]. More on page 4.030.0

Presented values are for informational purposes only. Exact values can be calculated using our sizing selection tool on Unimotion web site.

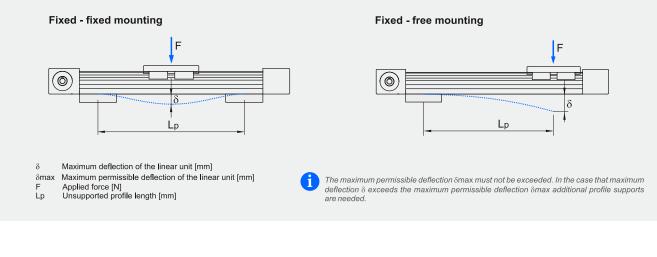
Drive and belt data

Linear Unit	**Max. travel speed [m / s]	Max, drive torque [Nm]	* No Ioad torque [Nm]	Puley drive ratio [mm / rev]	Pulley diameter [mm]	Belt type	Belt width	Max. force transmited by belt [N]	Specific spring constant C _{spec} [N]	** Max. acceleration [m/s ²]
MTJ 40 ECO S	2		1,0 × nc	180	F7 04	AT5	40	000	005000	70
MTJ 40 ECO L	3	7,5	1,1 × nc	180	57,31	AT5	12	262	235000	70

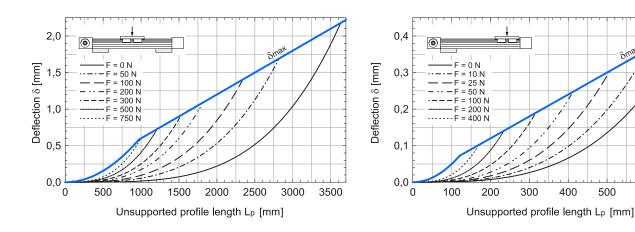
*The stated values are for strokes (and for distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation. nc - Number of carriages

**For travel speed and acceleration over the stated value in the table above please contact us.

Mass and mass moment of inertia

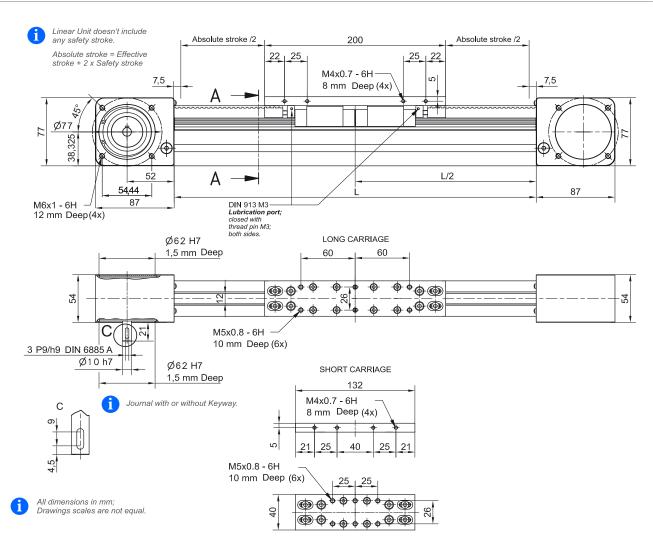

Linear Unit	Mass of linear unit	Mass moment of inertia	Planar m ine	
	[kg]	[10 ⁻⁵ kg m ²]	ly [cm ⁴]	lz [cm ⁴]
MTJ 40 ECO S	3,1 + 0,003 × (Abs. stroke + (nc - 1) × A) + 0,45 × (nc - 1)	70,1 + 0,007 × (Abs. stroke + (nc - 1) × A) + 36,9 × (nc - 1)	9.53	9,21
MTJ 40 ECO L	3,55 + 0,003 × (Abs. stroke + (nc - 1) × A) + 0,72 × (nc - 1)	92,3 + 0,007 × (Abs. stroke + (nc - 1) × A) + 59,1 × (nc - 1)	9,55	9,21

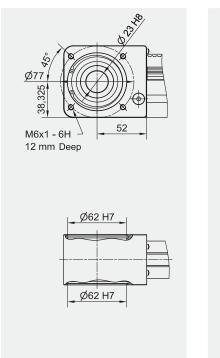
*Absolute stroke [mm]


A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages

Mass calculation doesn´t include mass of motor, reduction gear, switches and clamps.

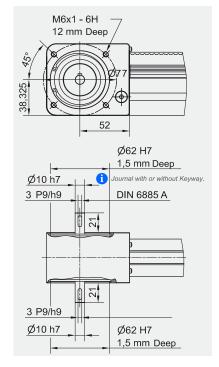
Deflection of the linear unit

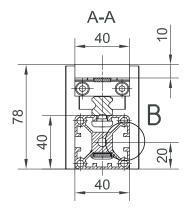


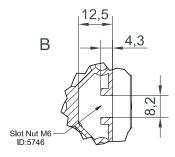

55

600

700

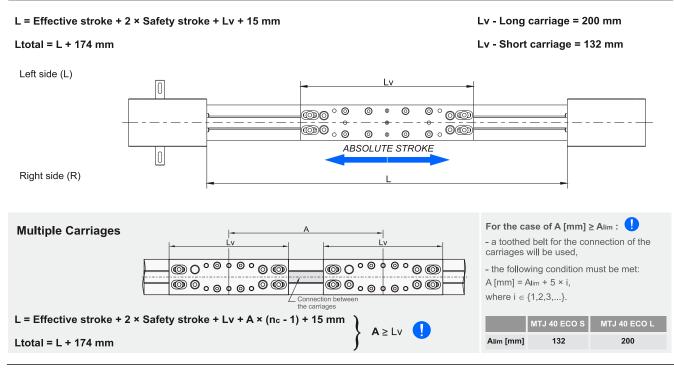



TYPE 0



TYPE 1 L and 1 R

44 Ø77 ,325 38, Ø 52 87 M6x1 - 6H 12 mm Deep Journal with or without Keyway. Ø62 H7 1,5 mm Deep 54 2 l 3 P9/h9 DIN 6885 A Ø10 h7 Ø62 H7 1,5 mm Deep TYPE 2



Mounting the drive

- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

Defining of the linear unit length

CHARACTERISTICS

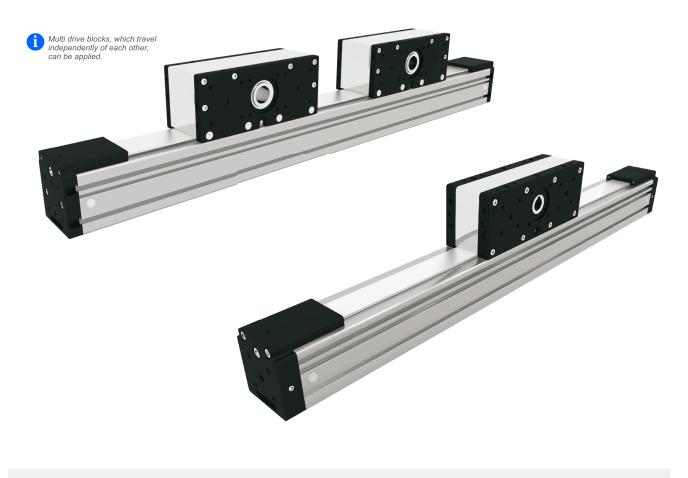
The **MTJZ** series contains Z-axis Linear Units with toothed belt drive, integrated Ball rail system and compact dimensions. This Linear Units provide high performance features such as, high speed, good accuracy and repeatability by vertical applications.

They can easily be combined to multi-axis systems.

Excellent price-/performance ratio and quick delivery time are ensured.

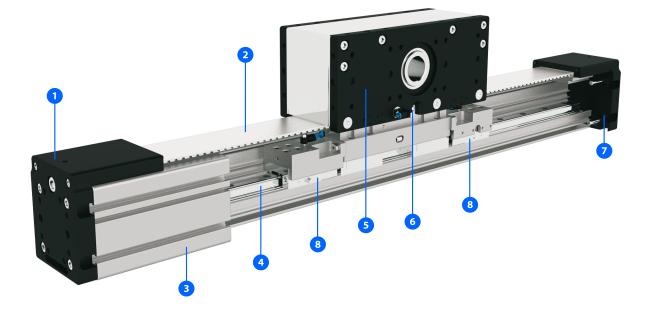
The compact, precision-extruded aluminum Profile from 6063 AL with integrated Zero-backlash Ball rail guide system, allows high load capacities and optimal cycles for the movement of larger masses at high speed.

In the linear units MTJZ is used a pre-tensioned steel reinforced AT polyurethane timing toothed belt. In conjunction with a Zero-backlash drive pulley high moments with alternating loads with good positioning accuracy, low wear and low noise can be realized.


The in the Profile slot driving Polyurethane timing belt protects all the parts in the Profile from dust and other contaminations

The aluminum Profile includes T-slots for attaching sensors and switches. Also, a Reed switch can be used here.

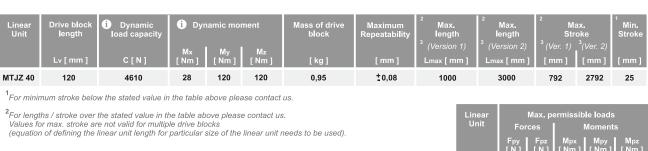
The drive block provides the possibility to attach a Motor or Gearbox housing and additional accessories on it.


Central lubrication port on the drive block allows easy re-lubrication of the Ball rail guide.

For the linear units MTJZ various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.

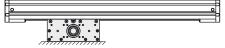
The aluminium profiles are manufactured according to the medium EN 12020-2 standard Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2 mm

STRUCTURAL DESIGN

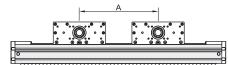

- 1 Tension End with integrated belt tensioning system
- 2 AT polyurethane toothed belt with steel tension cords
- **3** Aluminium profile-Hard anodized
- 4 Linear Ball Guideway
- 5 Drive block with pulley, Motor flange; with built in Magnets6 Central lubrication port; both sides
- 7 Tension End with integrated belt tensioning system
- 8 Clamping and braking element for linear guideway

HOW TO ORDER

	MTJZ -	65	- 700	- 10	- 0	- 2	- 35
Series :							
MTJZ							
Size :							
0							
55							
30							
10							
Absolute Stroke [mm] : (Absolute stroke = Effective stroke + 2 x	Safety stroke)]				
ype of drive pulley :							
: Pulley with through hole							
I: Pulley with journal							
0 : Pulley with journal (without Keyway)	1						
2: Pulley with journal on both sides							
20 : Pulley with journal on both sides (wi		h h - l -					
MTJZ 110 only available with drive p	ulley with througi	n noie					
Clamping element :							
: Without							
: With (available only for MTJZ 110)							
Only as emergency break!							
lumber of drive blocks :							


Leave blank : For the case of one drive block

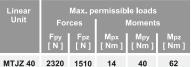
General technical data

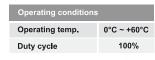


³Mounting versions

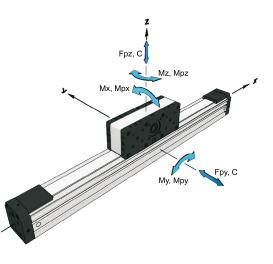
Version 1: Mounting by the drive block, profile travels

Version 2: Mounting by the profile, drive blocks travel




Multiple drive blocks, which travel independently of each other, can be applied.

7 Recommended values of loads


All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0)

Modulus of elasticity: $E = 70000 \text{ N} / mm^2$

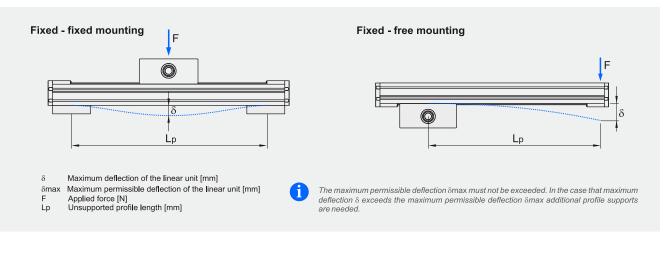
For operating temperature out of the presented range, please contact us.

Drive and belt data

Linear Unit	* Max. travel speed	Max. drive torque	No load torque of drive block	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant	* Max. acceleration
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	C _{spec} [N]	[m/s ²]
MTJZ 40	5	3,6	0,2	99	31,51	AT3	20	230	225000	70

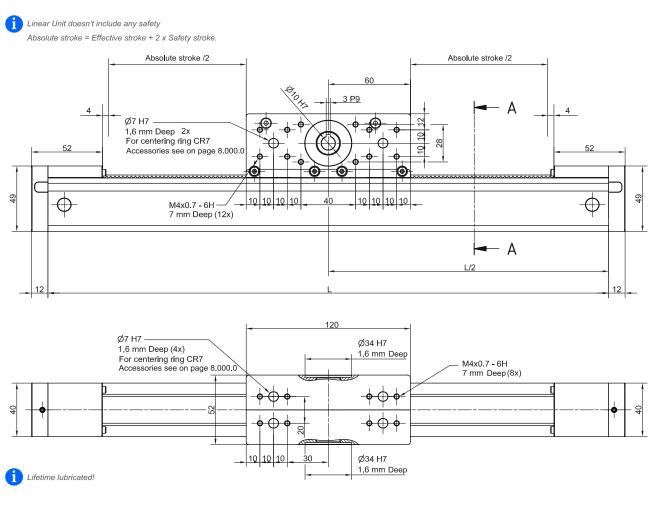
 * For travel speed and acceleration over the stated value in the table above please contact us.

Mass and planar moment of inertia

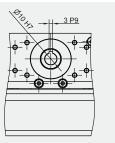

Linear Unit	* Mass of I	Mass of linear unit		Planar moment of inertia		
	[k	g]	ly [cm ⁴]	lz [cm ⁴]		
MTJZ 40	1,7 + 0,0023 × (Abs. stroke +	+ (nь - 1) × A) + 0,95 × (nь - 1)	9,8	11,6		
*Absolute stroke [mm] A - Distance between nb - Number of drive b	two drive blocks [mm]	Mass calculation doe	sn´t include ma	ass of motor, rea		

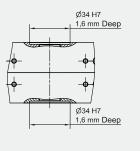
Mass moment of inertia

Linear Unit	* Mass moment of inertia (Version 1) [10 ⁻⁴ kg m ²]	Mass moment of inertia of drive block (<i>Version 2)</i> [10 ⁻⁴ kg m ²]
MTJZ 40	2,1 + 0,0058 × (Abs. stroke + (nb - 1) × A) + 0,22 × (nb - 1)	2,6
*Absolute stroke [mm]		


A - Distance between two drive blocks [mm] nb - Number of drive blocks

Deflection of the linear unit


MTJZ 40



All dimensions in mm; Drawings scales are not equal.

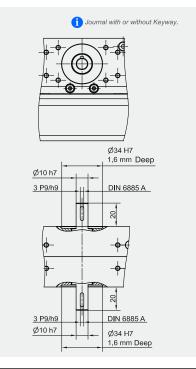
TYPE 0

TYPE 1

i Journal with or without Keyway.

Ø34 H7

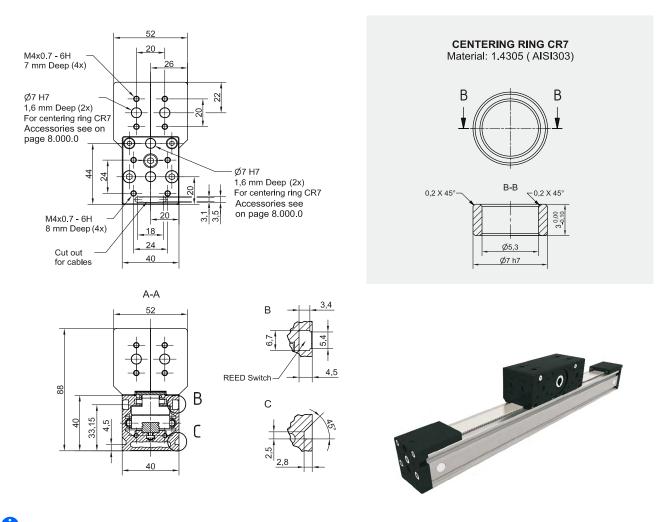
20


DIN 6885 A

Ø34 H7 1,6 mm Deep

-#

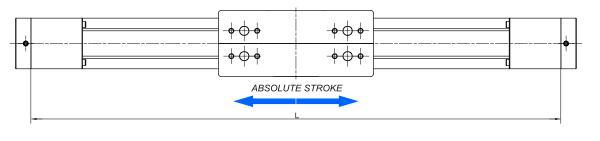
1,6 mm Deep

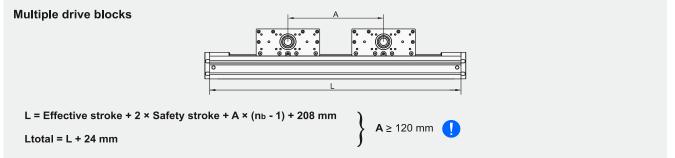

TYPE 2

4,5

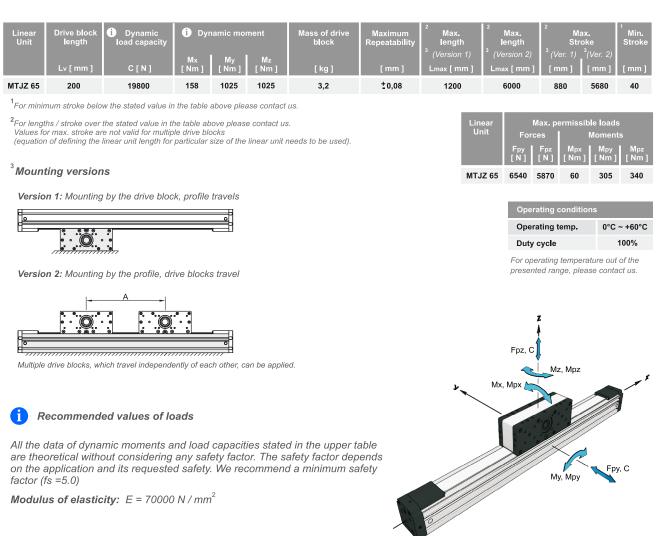
<u>3 P9/h9</u>

Ø10 h7


1


All dimensions in mm; Drawings scales are not equal.

Defining of the linear unit length


L = Effective stroke + 2 × Safety stroke + 208 mm

Ltotal = L + 24 mm

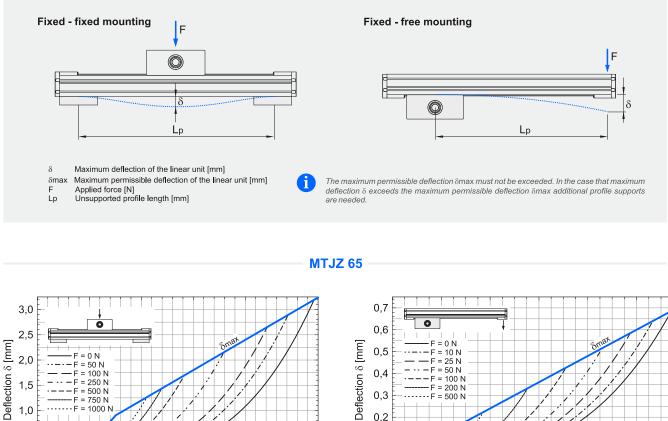
General technical data

Drive and belt data

Linear Unit	* Max. travel speed	Max. drive torque	No load torque of drive block	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant	* Max. acceleration
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	C _{spec} [N]	[m/s ²]
MTJZ 65	5	13,1	0,9	165	52,52	AT5	32	500	600000	70

m *For travel speed and acceleration over the stated value in the table above please contact us.

Mass and planar moment of inertia

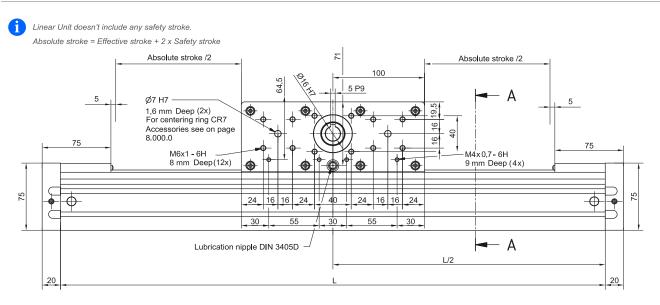

Linear Unit	*	Mass of linear unit		Planar moment of inertia		
		[kg]		ly [cm ⁴]	lz [cm ⁴]	
MTJZ 65	5,7 + 0,0054 × (A	Abs. stroke + (nb - 1) × A) + 3,2 × (nb - 1)	59,7	74,4	
*Absolute stroke [mm] A - Distance between nb - Number of drive b		1	Mass calculation does	sn´t include ma	ss of motor, rec	

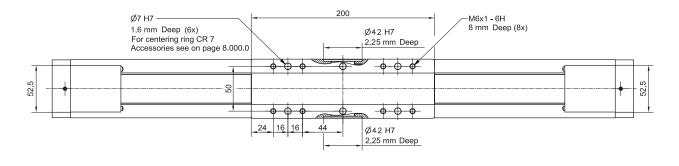
Mass moment of inertia

Linear Unit	* Mass moment of inertia (Version 1) [10 ⁻⁴ kg m ²]	Mass moment of inertia of drive block (<i>Version 2)</i> [10 ⁻⁴ kg m ²]
MTJZ 65	18,9 + 0,0374 × (Abs. stroke + (nb - 1) × A) + 1,7 × (nb - 1)	23,8
*Absolute stroke [mm]		

A - Distance between two drive blocks [mm] nb - Number of drive blocks

Deflection of the linear unit

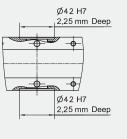



 $\begin{array}{c} \hline & F = 0 \ N \\ \hline & ---F = 10 \ N \\ \hline & ---F = 25 \ N \\ \hline & ---F = 50 \ N \\ \hline & ---F = 100 \ N \\ \hline & ---F = 200 \ N \\ \hline & ----F = 500 \ N \end{array}$ Deflection § [mm] = 0 N = 50 N = 100 N = 250 N = 500 N = 750 N = 1000 N 0,5 2,0 0,4 1,5 0,3 1,0 0,2 0,5 0,1 0,0 0,0 0 1000 2000 3000 4000 5000 0 200 400 Unsupported profile length Lp [mm] Unsupported profile length Lp [mm]

600

800


1000



All dimensions in mm; Drawings scales are not equal.

TYPE 0

TYPE 1

i Journal with or without Keyway.

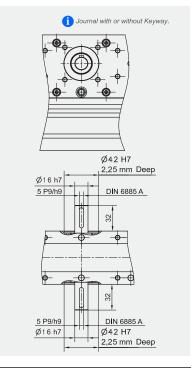
Ø42 H7

•

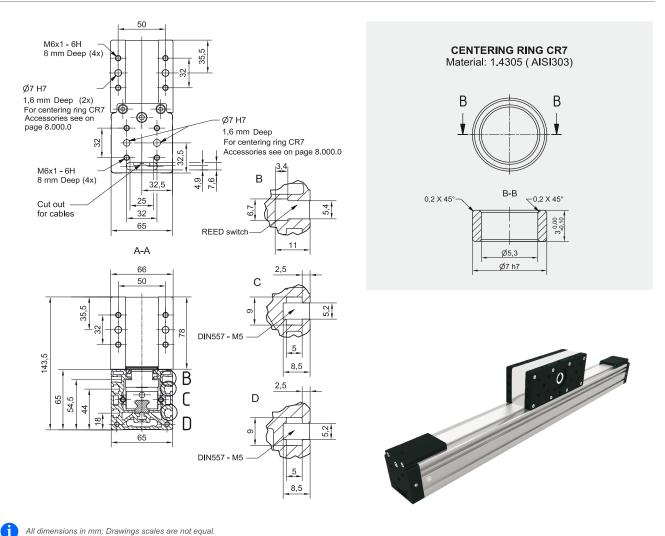
•-¢

DIN 6885 A

Ø42 H7 2,25 mm Deep

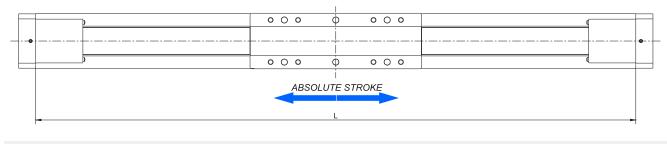

33

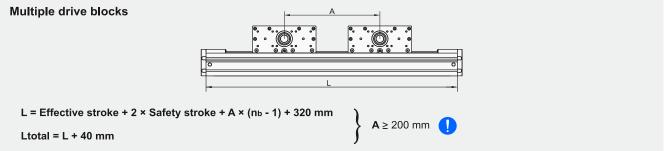
ø


2

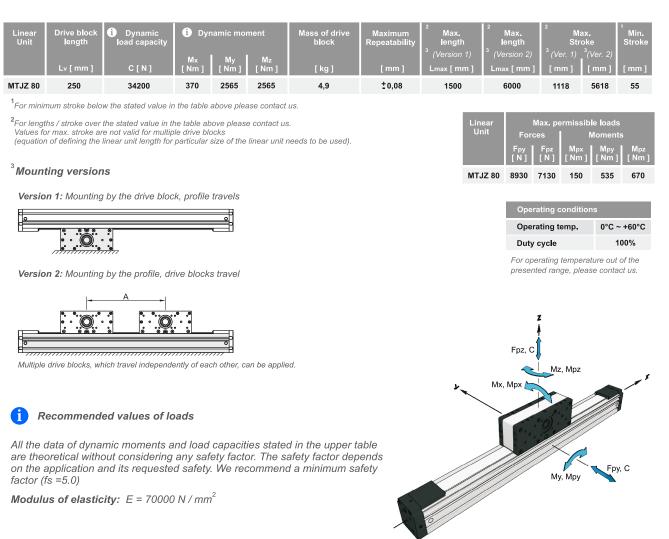
<u>5 P9/h9</u> Ø16 h7 2,25 mm Deep

TYPE 2


In order to improve the products in this catalogue the specifications are subject to change without notice.



Defining of the linear unit length


L = Effective stroke + 2 × Safety stroke + 320 mm

Ltotal = L + 40 mm

General technical data

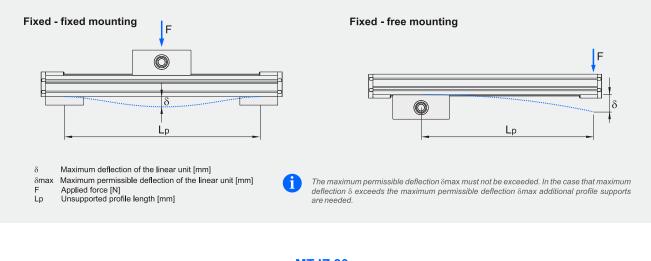
Drive and belt data

Linear Unit	* Max. travel speed	Max. drive torque	No load torque of drive block	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant	* Max. acceleration
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	C _{spec} [N]	[m/s ²]
MTJZ 80	5	29,4	1,4	210	66,84	AT5	50	880	960000	70

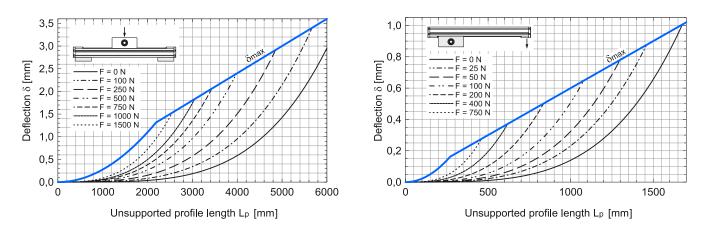
 * For travel speed and acceleration over the stated value in the table above please contact us.

Mass and planar moment of inertia

Linear Unit	* Mass of linear unit	Planar moment of inertia		
	[kg]	ly [cm⁴]	lz [cm ⁴]	
MTJZ 80	9,7 + 0,0083 × (Abs. stroke + (nb - 1) × A) + 4,9 × (nb - 1)	129,1	173,4	
*Absolute stroke [mm] A - Distance between nb - Number of drive		sn´t include ma	ss of motor, rea	

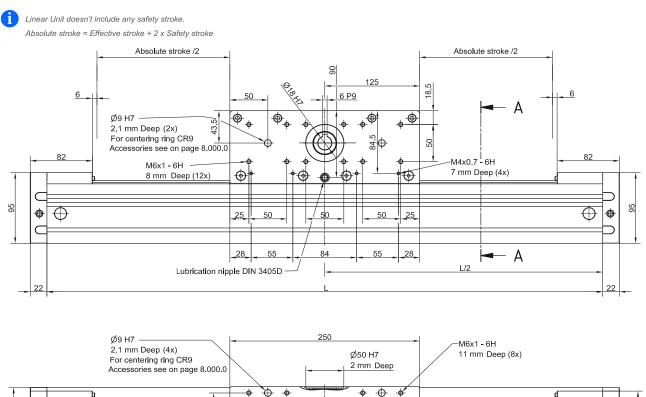

ude mass of motor, reduction gear, switches and clamps.

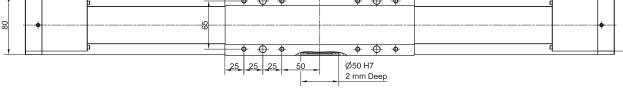
Mass moment of inertia


Linear Unit	Mass moment of inertia (Version 1) [10 ⁻⁴ kg m ²]	Mass moment of inertia of drive block (<i>Version 2)</i> [10 ⁻⁴ kg m ²]
MTJZ 80	60,0 + 0,0922 × (Abs. stroke + (nь - 1) × A) + 6,4 × (nь - 1)	61,1

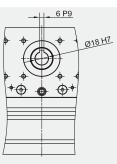
A - Distance between two drive blocks [mm] nb - Number of drive blocks

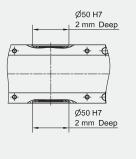
Deflection of the linear unit




MTJZ 80

2


DIMENSIONS



1 All dimensions in mm; Drawings scales are not equal.

TYPE 0

TYPE 1

۲

Ø50 H7

-

φ

DIN 6885 A

2 mm Deep

Ø50 H7

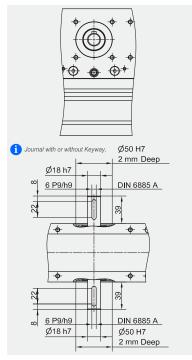
39

. 2 mm Deep

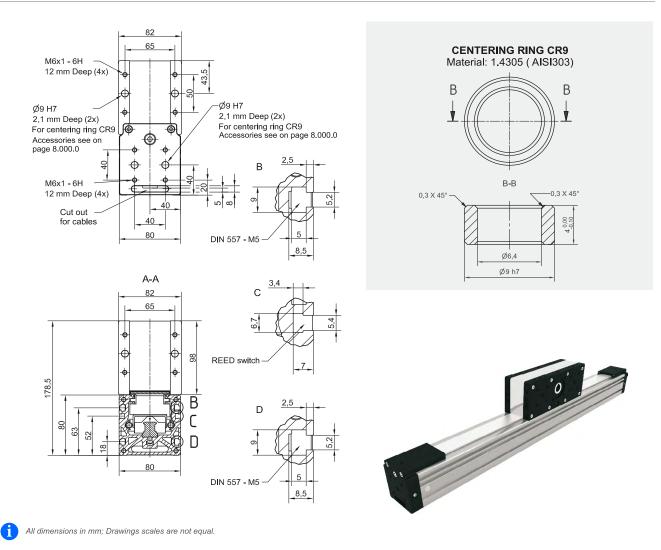
i Journal with or without Keyway.

-0

-\$

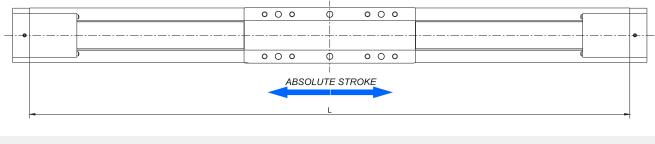

<u>6 P9/h9</u>

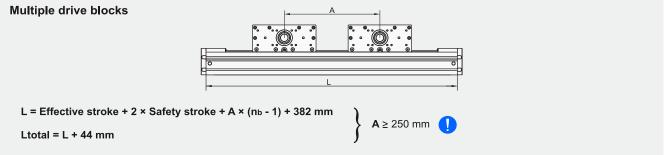
Ø18 h7


22

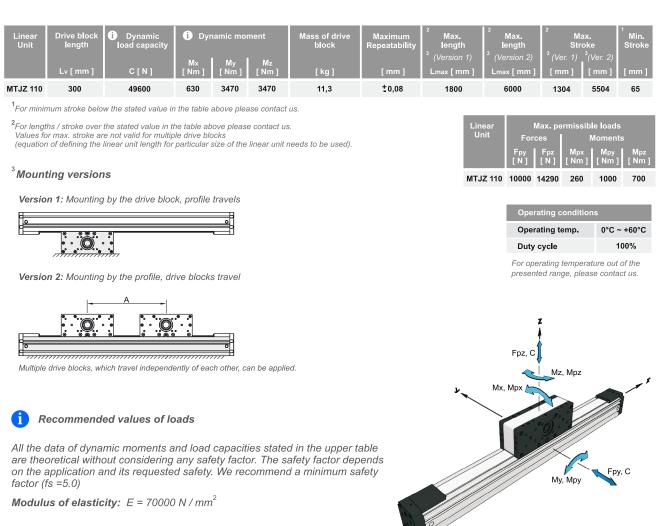
8

TYPE 2


In order to improve the products in this catalogue the specifications are subject to change without notice.



Defining of the linear unit length


L = Effective stroke + 2 × Safety stroke + 382 mm

Ltotal = L + 44 mm

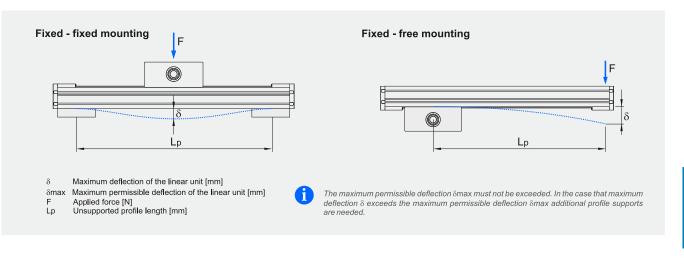
General technical data

Drive and belt data

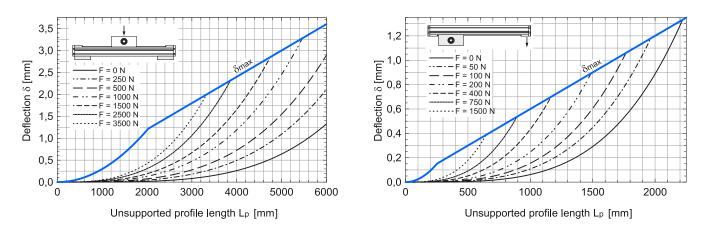
Linear Unit	* Max. travel speed	Max. drive torque	No load torque of drive block	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant	* Max. acceleration
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	C _{spec} [N]	[m/s ²]
MTJZ 110	5	110,0	2,6	300	95,49	AT10	70	2300	2450000	70

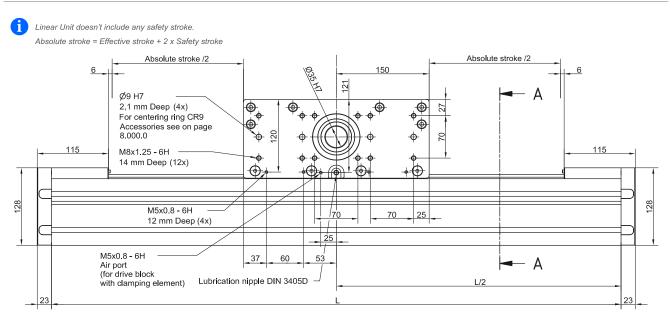
 $m ^*$ For travel speed and acceleration over the stated value in the table above please contact us.

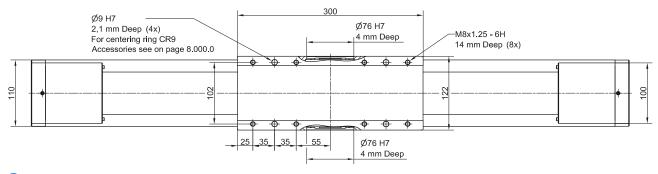
Mass and planar moment of inertia


Linear Unit	* Mass	of linear unit		moment of lertia
		[kg]	ly [cm⁴]	Iz [cm ⁴]
MTJZ 110	21,7 + 0,0147 × (Abs. stro	ke + (nь - 1) × A) + 11,3 × (nь - 1	513,0	620,0
*Absolute stroke [mm] A - Distance between nb - Number of drive b		Mass calculation	n doesn´t include m	ass of motor, rec

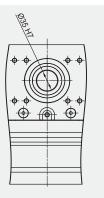
Mass moment of inertia


Linear Unit	 Mass moment of inertia (Version 1) [10⁻⁴ kg m²] 	Mass moment of inertia of drive block (Version 2) [10 ⁻⁴ kg m ²]
MTJZ 110	282,4 + 0,3358 × (Abs. stroke + (nb - 1) × A) + 45,3 × (nb - 1)	302,9

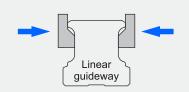

A - Distance between two drive blocks [mm] nb - Number of drive blocks


Deflection of the linear unit

MTJZ 110

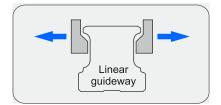


i All dimensions in mm; Drawings scales are not equal.


TYPE 0

Drive block with clamping element

Clamping by spring-loaded energy

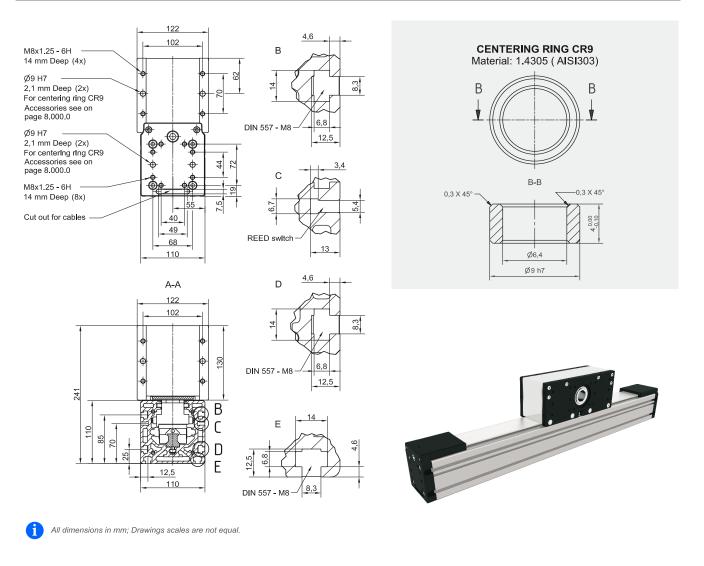


Air pressure = 0 bar

Holding force = 1400 N

Holding force is tested on clamping element using a slightly lubricated rail (ISO VG 68).

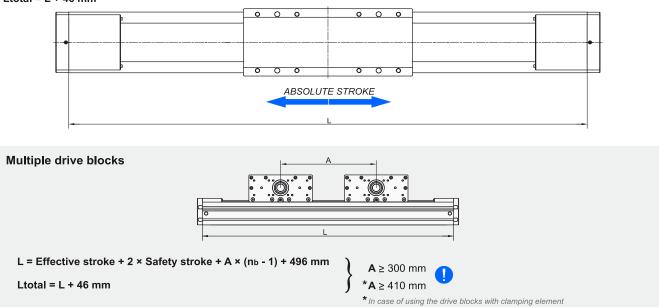
Opened by air pressure


Opening air pressure = 5,5 - 8 bar

1 The air pressure opens clamping pistons. Free movement is allowed.

Purified and oiled air shall be used (according to ISO 8573-1 Class 4). Recommended filter size is $25 \ \mu m$.

Linear Unit	Mass of drive block	* Mass of linear unit
	[kg]	[kg]
MTJZ 110	12,9	23,3 + 0,0147 × (Abs. stroke + (nb - 1) × A) + 12,9 × (nb - 1)
*	r	


*Absolute stroke [mm] A - Distance between two drive blocks [mm] nb - Number of drive blocks

Defining of the linear unit length

L = Effective stroke + 2 × Safety stroke + 496 mm

Ltotal = L + 46 mm

In order to improve the products in this catalogue the specifications are subject to change without notice.

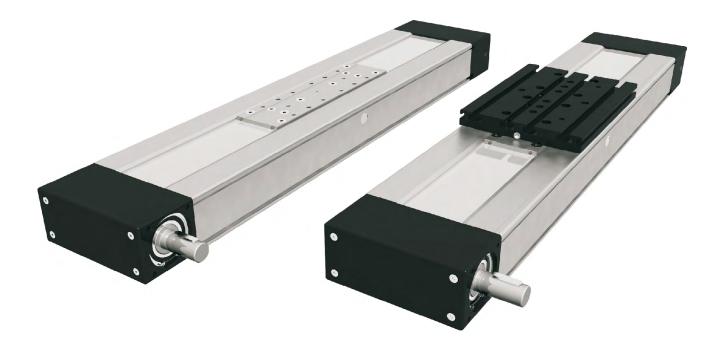
CTJ

CHARACTERISTICS

The **CTJ** series includes Linear Units with a toothed belt drive and two parallel, integrated, Zero-backlash rail guides. Compact dimensions allow high performance features such as, high speed and repeatability. They can easily be combined to multi-axis systems.

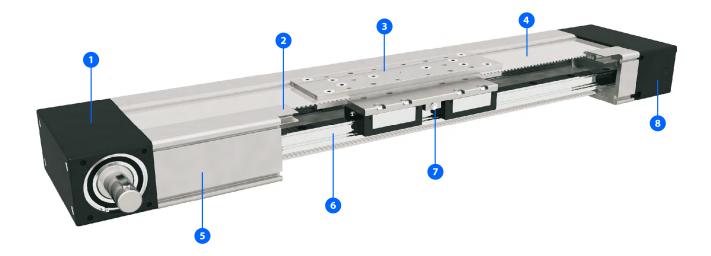
Excellent price-/performance ratio and quick delivery time are ensured.

A compact, precision-extruded aluminum Profile from AL 6063, with two parallel, integrated Zero-backlash rail guide systems, allows high load capacities and an optimal sequence for the movement of larger masses at high speed.


In the linear units CTJ is used a pre-tensioned steel reinforced AT polyurethane timing toothed belt. In conjunction with a Zero-backlash drive pulley high moments with alternating loads with good positioning accuracy, low wear and low noise can be realized.

The in the Profile slot driving Polyurethane timing belt, protects all the parts in the Profile from dust and other contaminations.

Different carriage lengths with lubrication port allows for easy re-lubrication of the Ball rail guide system and allows the possibility to attach additional accessories. The re-lubrication can also be done through maintenance holes on the side of the Profile.


The aluminum profile includes T-slots for fixing the Linear Unit and for attaching sensors and switches. Also, a Reed switch can be used here.

For the linear units CTJ various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.

The aluminium profiles are manufactured according to the medium EN 12020-2 standard Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2 mm

STRUCTURAL DESIGN

- 1 Drive block with pulley2 Aluminum cover

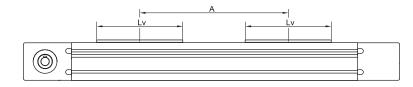
- a Auminium cover
 a Carriage; with built in Magnets
 a AT polyurethane toothed belt with steel tension cords
 5 Aluminium profile-Hard anodized
 6 Two integrated Linear Ball Guideways
 7 Central lubrication port; both sides
 8 Tension End with integrated belt tensioning system

HOW TO ORDER

	CTJ - 14	5 - 1000	- <u>L2</u> -	300 -	10R -	1
Series :						
СТЈ						
-						
Size :						
90 110						
145						
200						
200						
Absolute stroke [mm]: ——						
(Absolute stroke = Effective strok	e + 2 x Safety stroke)					
,	,					
Carriage Version :						
S : Short						
L:Long						
5						
Number of carriages : ———						
The stated number specifies the						
(up to 5 carriages avaliable)	-					
Leave blank : For the case of or	e carriage					
Distance between two carriage	s [mm] :					
Leave blank : For the case of or	e carriage					
Type of drive pulley :						
1: Pulley with journal						
10 : Pulley with journal (without k	(eyway)					
2 : Pulley with journal on both s	ides					
20 : Pulley with journal on both s	ides (without Keyway)					
3: Without drive unit						
Drive journal position: ——						
L : Journal on left side						
R : Journal on right side						
Leave blank : For type of drive p	ullev 2, 20 and 3					
By CTJ 200 with drive pulley		nal position left - I	or riaht - R side	e must be also		
specified - motor/gearbox atta	achment side.		o, nghi n oluc			
Connection plate :						
0: Without						

1: With

General technical data


Linear Unit	Carriage length	i Dynamic Ioad capacity	i Dynamic moment			For	Max. ces		ible loac Moments		Moved mass	Max. Repeatability	* Max. length	* Max. stroke	** Min. stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	[kg]	[mm]	Lmax [mm]	[mm]	[mm]
CTJ 90 S	102	4620	125	17	34	2000	4000	110	17	34	0,20	+ 0,08	6000	5873	25
CTJ 90 L	156	9240	250	290	290	3990	8270	200	290	125	0,35	± 0,08	6000	5819	25
Values for	r max. stroke	er the stated value i are not valid for mu ne linear unit length	Itiple carria	ages			ds to be	used).				ļ	Operating co	nditions	
alle alle	0	below the stated val	,					uoou).					Operating ter	np. (°C ~ +60°C
										Z			Duty cycle		100%
stated ir conside depends	n the uppe ring any s s on the a	aamic moments er table are theo afety factor. Th pplication and i minimum safe	oretical v e safety ts reque	vithout factor sted sa	fety.		r		, Mpx	Mz,	Mpz				
Modulu	s of elast	ticity							\times			Fpy, C			
E = 700		-					/	/ /	// /	My, I		, ph, C			

General technical data for double carriage

Linear					:	* Max. permissible loads				
Unit	version	load capacity				Forces		Moments		
		C [N]	Mx[Nm]	My [Nm]	Mz [Nm]	Fpy[N]	Fpz [N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]
CTJ 90	S2	9230	250	4,6 × A	4,6 × A	4000	8000	220	4,0 × A	2,0 × A
013 90	L2	18400	500	9,2 × A	9,2 × A	8000	16500	400	8,3 × A	4,0 × A

*A - Distance between carriages [mm]. More info on following pages.

Presented values are for informational purposes only. Exact values can be calculated using our sizing selection tool on Unimotion web site.

Drive and belt data

A

Linear Unit	** Max. travel speed	Max. drive torque	* No load torque	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant Cspec	** Max. acceleration
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	[N]	[m/s²]
CTJ 90 S	5	7,5	0,40 × nc	00	20.65	AT 2	25	500	403500	70
CTJ 90 L		7,5	0,42 × nc	90	28,65	AT 3	35	520	402500	70

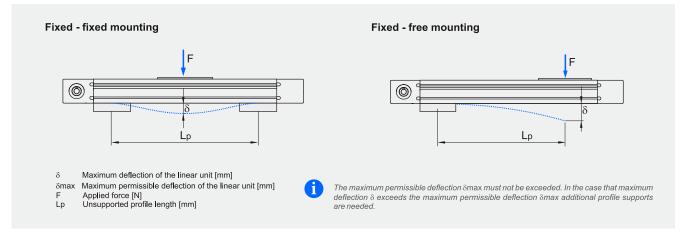
*The stated values are for strokes (and distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation.

nc - Number of carriages

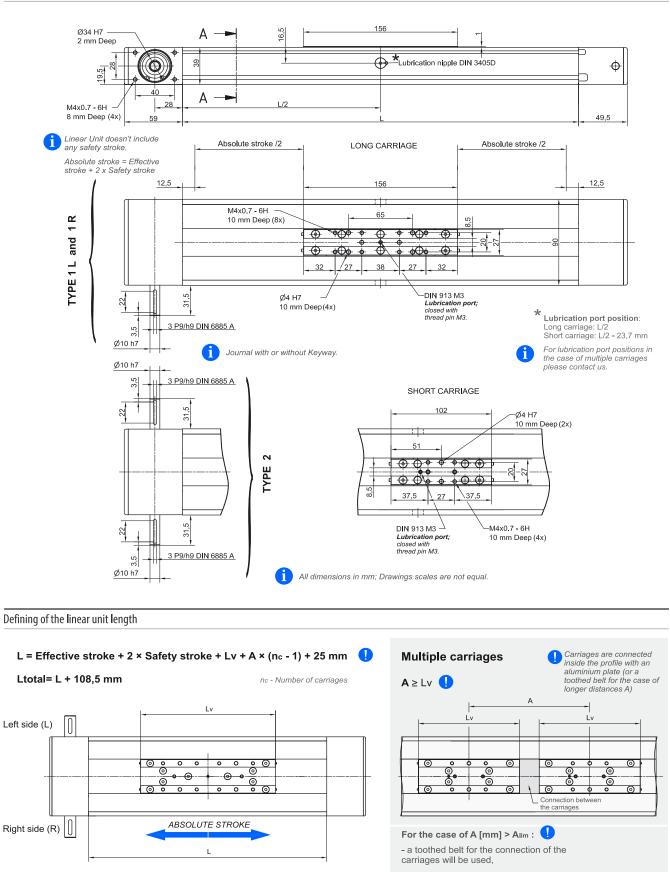
**For travel speed and acceleration over the stated value in the table above please contact us.

Mass and mass moment of inertia

Linear Unit	Mass of linear unit	Mass moment of inertia	Planar moment of inertia		
	[kg]	[10 ⁻⁵ kg m ²]	ly [cm ⁴]	lz [cm ⁴]	
CTJ 90 S	1,7 + 0,0048 × (Abs. stroke + (nc - 1) × A) + 0,20 × (nc - 1)	7 + 0,0031 × (Abs. stroke + (nc - 1) × A) + 4,1 × (nc - 1)	13.4	407.0	
CTJ 90 L	2,1 + 0,0048 × (Abs. stroke + (nc - 1) × A) + 0,35 × (nc - 1)	11 + 0,0031 × (Abs. stroke + (nc - 1) × A) + 7,2 × (nc - 1)	13,4	107,0	


*Absolute stroke [mm]

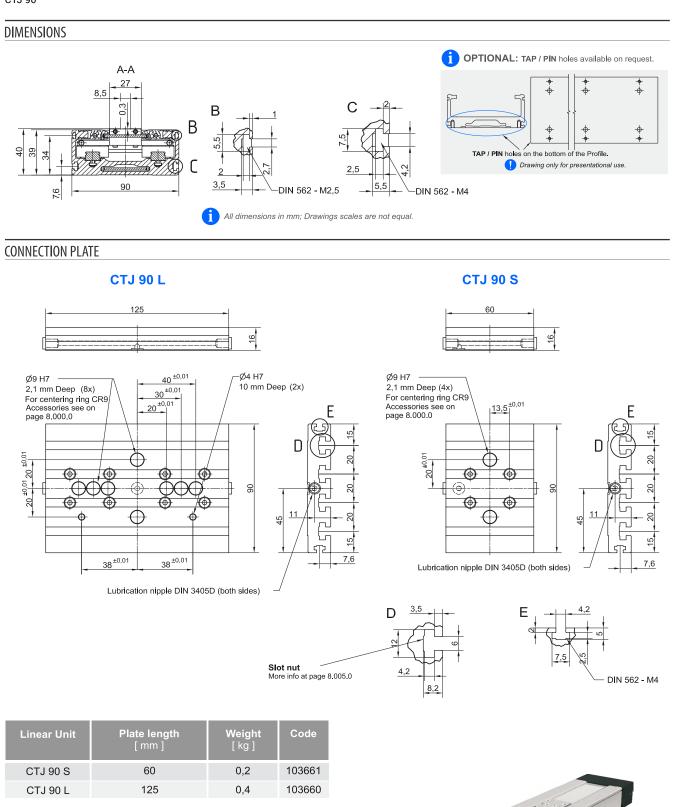
A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages


6

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

Deflection of the linear unit

CTJ 90 2,0 0,5 0,4 F = 0 N F = 10 N F = 25 N F = 50 N F = 100 N F = 200 N F = 500 N Deflection § [mm] Deflection § [mm] = 0 N 1,5 - F = 20 N - F = 50 N - F = 100 N 0,3 F = 200 N F = 400 N F = 750 N 1,0 0,2 0,5 0,1 0,0 0,0 0 500 1000 1500 2000 2500 3000 3500 0 200 400 600 800 Unsupported profile length Lp [mm] Unsupported profile length Lp [mm]


- the following condition must be met: $A [mm] = A_{lim} + 3 \times i,$

where i ∈	{1,2,3,}.	
	CTJ 90 S	СТЈ 90 І
Alim [mm]	401,5	455,5

Lv - Long carriage = 156 mm

Lv - Short carriage = 102 mm

Mounting elements for mounting the connection plate on the Linear unit are inlcuded.

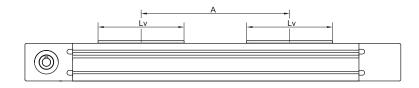
Mounting the drive

1

- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

1 Available on request.

General technical data


Linear Unit	Carriage length	i Dynamic Ioad capacity	i	Dynamic moment		For	Max. ces		ible load Moments		Moved mass	Max. Repeatability	* Max. length	* Max. stroke	** Min. stroke
	Lv [mm]	C[N]	M× [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]	[kg]	[mm]	Lmax [mm]	[mm]	[mm]
CTJ 110 S	170	19800	610	118	235	6470	8390	260	90	90	0,64	<mark>+</mark> 0,08	6000	5805	40
CTJ 110 L	215	39600	1225	1680	1680	13080	18820	525	880	550	0,98	+ 0,08	0000	5760	40
Values for	r max. stroke	er the stated value i are not valid for mu ne linear unit length n	ltiple carria	ges			ts to be	used)					Operating con	ditions	
deals.	0	below the stated val						uoou).					Operating tem	p. (0°C ~ +60°C
										Z			Duty cycle		100%
									Fpz, C			P	presented range,	,	
All the d stated ir conside depends	lata of dyr 1 the uppe ring any s s on the a _l	anded values of amic moments r table are theo afety factor. Th oplication and i minimum safe	and loa pretical v e safety ts reque	d capac vithout factor sted sat	fety.		Y.		Fpz, C	Mz,					
All the d stated ir conside depends We recc	lata of dyr 1 the uppe ring any s s on the a _l	amic moments r table are theo afety factor. Th oplication and i minimum safe	and loa pretical v e safety ts reque	d capac vithout factor sted sat	fety.		بر		, Mpx 🚬			Fpy, C		,	

General technical data for double carriage

Linear	Carriage	Dynamic	*	Dynamic moment	t	*		Max. peri	nissible loads	
Unit	version	load capacity				For	ces		Moments	
		C [N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]
CTJ 110	S2	39600	1220	19,8 × A	19,8 × A	12940	16770	520	8,4 × A	6,5 × A
013 110	L2	79200	2450	39,6 × A	39,6 × A	26150	37600	1050	18,8 × A	13,1 × A

*A - Distance between carriages [mm]. More info on following pages.

Presented values are for informational purposes only. Exact values can be calculated using our sizing selection tool on Unimotion web site.

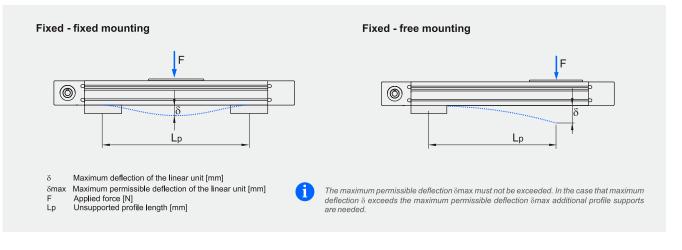
Drive and belt data

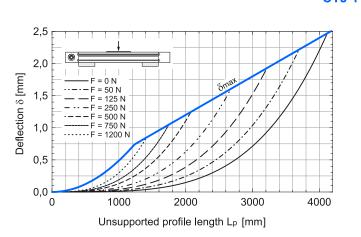
Linear Unit	** Max. travel speed	Max. drive torque	* No load torque	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant Cspec	** Max. acceleration
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	[N]	[m/s²]
CTJ 110 S	6	15,7	0,98 × nc	120	38,20	AT 5	50	820	960000	70
CTJ 110 L	5	13,7	1,00 × nc	120	55,20	AI 3	50	520	355000	70

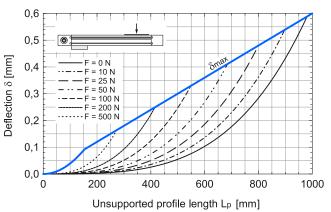
*The stated values are for strokes (and distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation.

nc - Number of carriages **For travel speed and acceleration over the stated value in the table above please contact us.

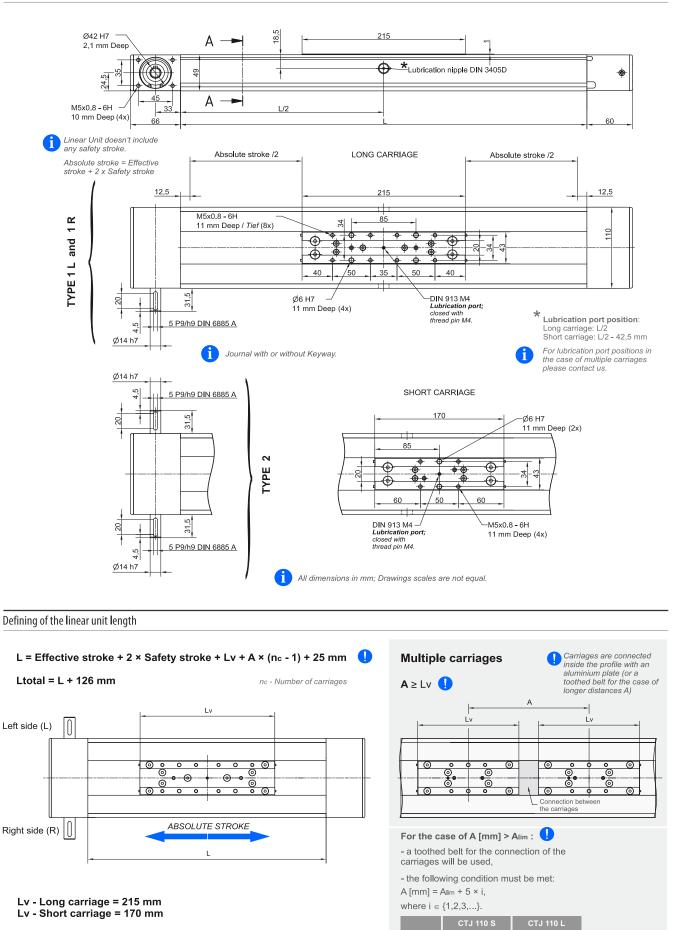
Mass and mass moment of inertia

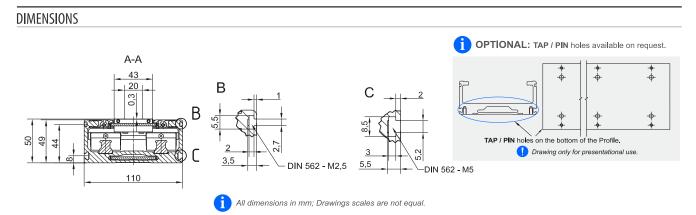

Linear Unit	Mass of linear unit	Mass moment of inertia		oment of ertia
	[kg]	[10 ⁻⁵ kg m ²]	ly [cm ⁴]	lz [cm⁴]
CTJ 110 S	3,6 + 0,0072 × (Abs. stroke + (nc - 1) × A) + 0,64 × (nc - 1)	36 + 0,0125 × (Abs. stroke + (nc - 1) × A) + 23,3 × (nc - 1)	31.1	217,2
CTJ 110 L	4,2 + 0,0072 × (Abs. stroke + (nc - 1) × A) + 0,98 × (nc - 1)	49 + 0,0125 × (Abs. stroke + (nc - 1) × A) + 35,8 × (nc - 1)	31,1	217,2


*Absolute stroke [mm] A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages

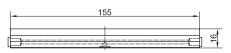

1

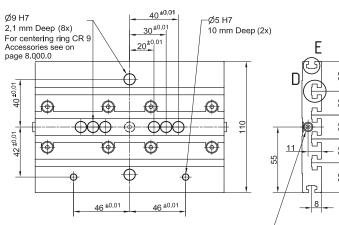
Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

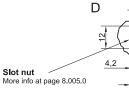

Deflection of the linear unit

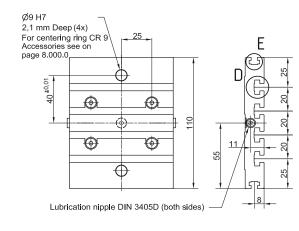

CTJ 110

646


Alim [mm]


601


CONNECTION PLATE



Lubrication nipple DIN 3405D (both sides)

CTJ 110 S

3,5

Linear Unit	Plate length [mm]	Weight [kg]	Code
CTJ 110 S	60	0,35	103663
CTJ 110 L	155	0,60	103662

Mounting elements for mounting the connection plate on the Linear unit are inlcuded.

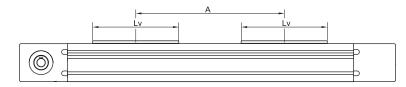
Mounting the drive

1

- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

1 Available on request.

General technical data


Linear Unit	Carriage Iength	i Dynamic Ioad capacity	i	Dynamic moment		For	Max. rces I		ible loac Moments		Moved mass	Max. Repeatability	* Max. length	* Max. stroke	** Min. stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fру [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	[kg]	[mm]	Lmax [mm]	[mm]	[mm]
CTJ 145 S	180	34200	1500	260	520	8930	15320	674	260	180	1,35	+ 0,08	6000	5795	55
CTJ 145 L	240	68400	3005	3420	3420	17870	30640	1200	1700	893	2,25	+ 0,08	0000	5735	55
Values for	r max. stroke	ver the stated value in are not valid for mu the linear unit length f	tiple carria	iges			ds to be	used).					Operating co	nditions	
ale de	0	below the stated val	'										Operating ter	np. (°C ~ +60°(
										Z			Duty cycle		100%
stated in consider depends	n the uppe ring any s s on the a	namic moments er table are theo afety factor. Th pplication and i minimum safel	oretical v e safety ts reque	vithout factor sted sa	fety.		بلا		, Mpx	Mz,	Mpz				
		liaite :				/			×/		<i>i</i> <_	Fpy, C			
Modulu	s of elast	licity					/								

General technical data for double carriage

Linear	Carriage	Dynamic	*	Dynamic moment	:	*		Max. peri	missible loads	
Unit	version	load capacity				For	ces		Moments	
		C [N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]
CTJ 145	S2	68400	3000	34,2 × A	34,2 × A	17870	30640	1350	15,3 × A	8,9 × A
013 145	L2	136800	6000	68,4 × A	68,4 × A	35700	61200	2400	30,6 × A	17,8 × A

*A - Distance between carriages [mm]. More info on following pages.

Presented values are for informational purposes only. Exact values can be calculated using our sizing selection tool on Unimotion web site.

Drive and belt data

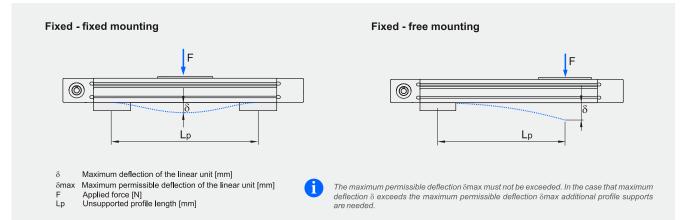
Linear Unit	** Max. travel speed [m / s]	Max. drive torque [Nm]	*No load torque	Puley drive ratio [mm / rev]	Pulley diameter [mm]	Belt type	Belt width [mm]	Max. force transmited by belt [N]	Specific spring constant C _{spec} [N]	** Max. acceleration [m/s ²]
CTJ 145 S	c	22.0	1,48 × nc	165	52,52	AT 6	70	1280	4200000	70
CTJ 145 L	6	33,6	1,50 × nc	105	52,52	AT 5	70	1280	1360000	70

*The stated values are for strokes (and distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation. nc - Number of carriages

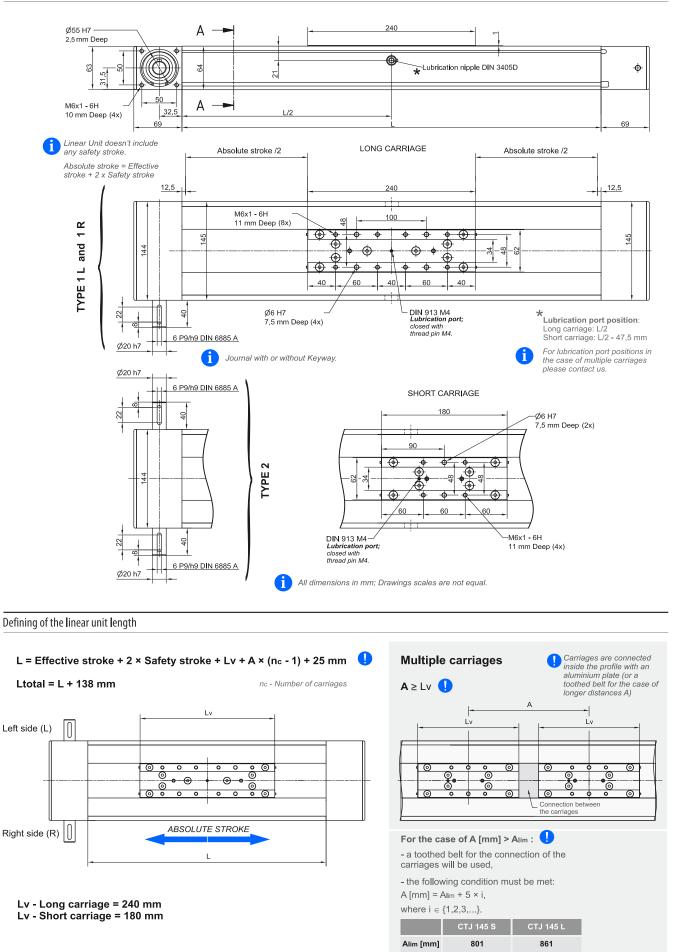
**For travel speed and acceleration over the stated value in the table above please contact us.

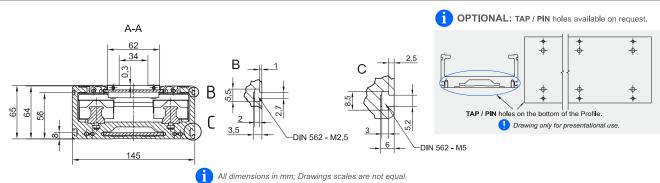
Mass and mass moment of inertia

Linear Unit	Mass of linear unit	Mass moment of inertia		oment of ertia
	[kg]	[10 ⁻⁵ kg m ²]	ly [cm ⁴]	lz [cm ⁴]
CTJ 145 S	7,2 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 1,35 × (nc - 1)	145 + 0,0330 × (Abs. stroke + (nc - 1) × A) + 93,1 × (nc - 1)	78.9	707.6
CTJ 145 L	8,8 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 2,25 × (nc - 1)	208 + 0,0330 × (Abs. stroke + (nc - 1) × A) + 155,2 × (nc - 1)	10,9	0,00


*Absolute stroke [mm]

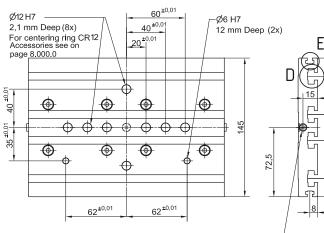
A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages

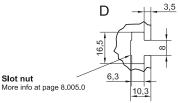

a


Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

Deflection of the linear unit

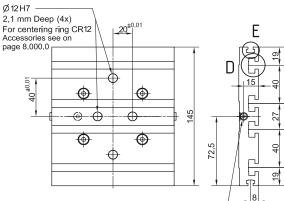

CTJ 145 0,6 2,5 0,5 5 51 2,0 - F = 0 N - F = 50 N - F = 100 N - F = 200 N - F = 400 N - F = 750 N - F = 1200 N Deflection § [mm] Deflection § [mm] = 0 N = 125 N 0,4 = 250 N = 500 N 1,5 0,3 F = 1000 N F = 1500 N 1,0 = 2500 N 0,2 0,5 0,1 0,0 0,0 0 1000 4000 0 200 1000 2000 3000 400 600 800 Unsupported profile length Lp [mm] Unsupported profile length Lp [mm]



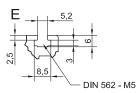

CONNECTION PLATE

CTJ 145 L

Lubrication nipple DIN 3405D (both sides)



5


6

CTJ 145 S

Lubrication nipple DIN 3405D (both sides)

Linear Unit	Plate length [mm]	Weight [kg]	Code
CTJ 145 S	125	0,8	103665
CTJ 145 L	190	1,3	103664

Mounting elements for mounting the connection plate on the Linear unit are inlcuded.

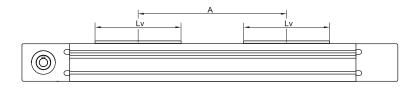
Mounting the drive

1

- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

Available on request.

General technical data


Linear Unit	Carriage Iength	i Dynamic Ioad capacity	i	Dynamic moment		For	Max. rces		ible load Noments		Moved mass	Max. Repeatability	* Max. length	* Max. stroke	** Min. stroke
	Lv [mm]	n] C[N] 49600	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]			Lmax [mm] [mm		[mm]
CTJ 200 S	265	49600	3235	450	900	10000	24520	1600	450	308	3,05	<mark>+</mark> 0,08	6000	5710	65
CTJ 200 L	405	99200	6470	8680	8680	20000	50900	3250	4550	1750	5,70	<mark>+</mark> 0,08	6000	5570	65
Values for	max. stroke	er the stated value in are not valid for mu ne linear unit length f	tiple carria	ges			ds to be	used)					Operating co	nditions	
		below the stated valu						uoou).					Operating ter	np.	0°C ~ +60°C
										Z			Duty cycle		100%
i F	Recomme	ended values o	of loads						Fpz, C	Î		p	presented range	e, please c	ontact us.
All the da stated in consider depends	ata of dyr the uppe ing any s on the a	ended values of namic moments In table are theo afety factor. The oplication and it minimum safet	and loa retical v e safety s reque	d capac vithout factor sted sat	fety.				Fpz, C	Mz,	Mpz		resented range	ə, please c	ontact us.
All the da stated in consider depends We reco	ata of dyr the uppe ing any s on the a	amic moments r table are theo afety factor. Th oplication and it minimum safet	and loa retical v e safety s reque	d capac vithout factor sted sat	fety.		ע		, Mpx 🍃			Fby, C	resented range	ə, please c	ontact us.

General technical data for double carriage

		Dynamic	*	* Max. permissible loads						
Unit	version	load capacity	/		Forces		Moments			
		C [N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]
CTJ 200	S2	99200	6470	49,6 × A	49,6 × A	20000	49040	3200	24,5 × A	10,0 × A
013 200	L2	198400	12940	99,2 × A	99,2 × A	40000	101800	6500	50,9 × A	20,0 × A

*A - Distance between carriages [mm]. More info on following pages.

Presented values are for informational purposes only. Exact values can be calculated using our sizing selection tool on Unimotion web site. 61)

Drive and belt data

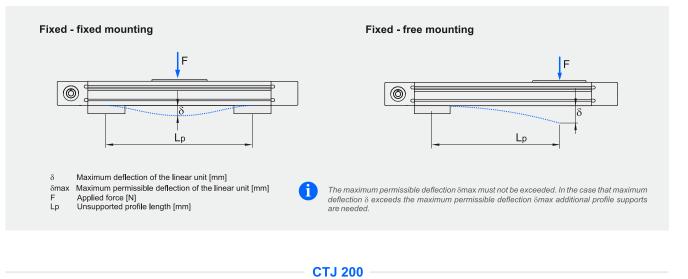
Linear Unit	** Max. travel speed	Max. drive torque	* No load torque	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant C _{spec}	** Max. acceleration
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	[N]	[m/s²]
CTJ 200 S	C	102 with keyway	3,5 × nc	250	70.59	AT 10	100	2950	4250000	70
CTJ 200 L	6 CTJ 200 L	113 without keyway	4,5 × nc	250	79,58	AT 10	100	2850	4350000	70

*The stated values are for strokes (and distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation. nc - Number of carriages

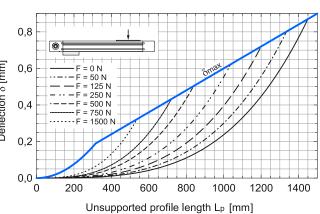
**For travel speed and acceleration over the stated value in the table above please contact us.

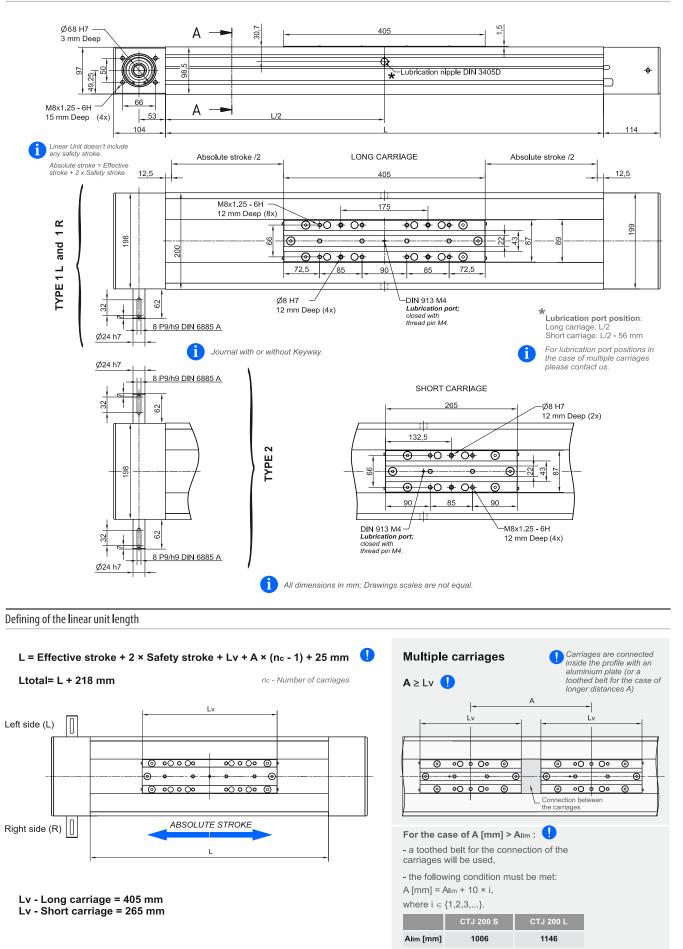
Mass and mass moment of inertia

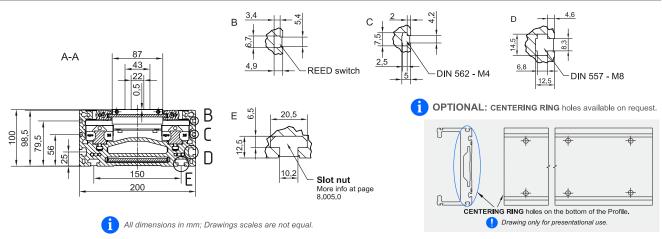
Linear Unit	Mass of linear unit	Mass moment of inertia	Planar moment of inertia		
	[kg]	[10 ⁻⁵ kg m ²]	ly [cm ⁴]	lz [cm ⁴]	
CTJ 200 S	20,2 + 0,0245 × (Abs. stroke + (nc - 1) × A) + 3,1 × (nc - 1)	778 + 0,1868 × (Abs. stroke + (nc - 1) × A) + 482,9 × (nc - 1)	376.4	2744.6	
CTJ 200 L	26,2 + 0,0245 × (Abs. stroke + (nc - 1) × A) + 5,7 × (nc - 1)	1210 + 0,1868 × (Abs. stroke + (nc - 1) × A) + 902,4 × (nc - 1)	570,4	2744,0	

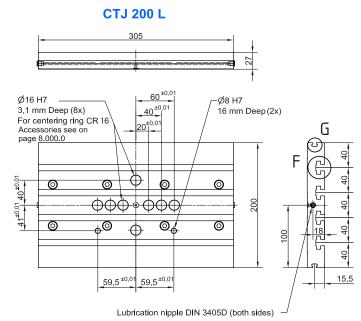

*Absolute stroke [mm]

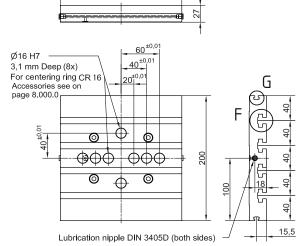
A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages

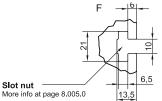

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

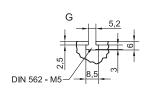

6


Deflection of the linear unit


3,5 3,0 Deflection & [mm] Deflection § [mm] 2,5 0 N = 250 N 2,0 F = 500 N F = 1000 N = 1500 N 1,5 = 2500 N 3500 N 1,0 0,5 0,0 0 1000 2000 5000 6000 3000 4000 Unsupported profile length Lp [mm]






CONNECTION PLATE

CTJ 200 S

Linear Unit	Plate length [mm]	Weight [kg]	Code
CTJ 200 S	190	2,3	103667
CTJ 200 L	305	3,7	103666

Mounting elements for mounting the connection plate on the Linear unit are inlcuded.

Mounting the drive

П

- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

Available on request.

CTV

CHARACTERISTICS

The **CTV** series describes Linear Units with a precision ball screw drive and two parallel, integrated, Zerobacklash rail guides. Compact dimensions allow high performance features such as, high speeds, good accuracy and repeatability.

They can easily be combined to multi-axis systems.

Excellent price-/performance ratio and quick delivery time are ensured.

The compact, precision-extruded aluminum Profile from AL 6063, with two parallel, integrated, Zerobacklash rail guide systems, allows high load capacities and optimal cycles for the movement of larger masses at high speed.

In the Linear Units CTV a precision ball screw, with tolerance class ISO7 (ISO5 on request), with reduced backlash of the ball nut is used.

Two parallel circulating antistatic polyurethane sealing strips and an aluminum cover are ensuring to protect all the parts in the profile from dust and other contaminantions.

Different carriage lengths with lubrication port allows for easy re-lubrication of the ball screw and Ball rail guide system and allows the possibility to attach additional accessories. The re-lubrication can also be done through maintenance holes on the side of the Profile.

The aluminum profile includes T-slots for fixing the Linear Unit and for attaching sensors and switches. Also, a Reed switch can be used here.

For the linear units CTV various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.

 The aluminium profiles are manufactured according to the medium EN 12020-2 standard Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2 mm

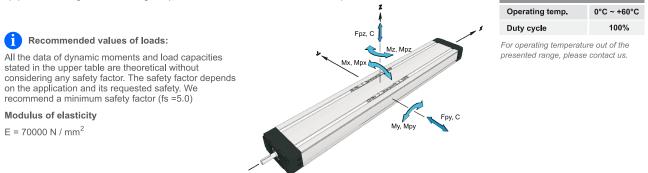
5

- 1 Drive block with floating bearing
- 2 Gap-type seal of antistatic PU strip (recirculating)
 3 Ball screw tolerance ISO7 (ISO5 available on request)
- 4 Carriage; with built in Magnets
- 5 Aluminum cover

STRUCTURAL DESIGN

- 6 Aluminium profile-Hard anodized
- 7 Two integrated Linear Ball Guideways
- 8 Central Iubrication port; both sides
- 9 End block with fixed bearing

HOW TO ORDER

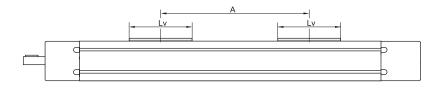

CTV - 110 - 1610 -	ISO7 - 0	- 700	- <mark>S2</mark> -	200 -	1 - 1
Series: –					
СТУ					
Size:					
110					
145					
200					
Ball screw :					
CTV 90: Ø12×5, Ø12×10 CTV 110: Ø16×5, Ø16×10, Ø16×16					
CTV 145: Ø20×5, Ø20×10, Ø20×20, Ø20×50					
CTV 200: Ø32×5, Ø32×10, Ø32×20, Ø32×32					
Ball screw tolerance :					
ISO7 (Standard)					
ISO5					
Ball screw journal:					
0 : Without keyway					
1 : With keyway					
! CTV 90 only available without keyway - 0					
Absolute stroke [mm] :					
(Absolute stroke = Effective stroke + 2 x Safety strok	(e)				
Carriage Version:					
S : Short					
L : Long					
Number of carriages :					
The stated number specifies the number of ca	arriages on one Line	ear unit (up to 5 car	rriages avaliable	e)	
Leave blank : For the case of one carriage	-		-		
	riaid				
Connection between the carriages is not r	igia				
Distance between two carriages [mm]: 一					
Leave blank : For the case of one carriage					
Connection plate :					
0 : Without					
1 : With					
 Without antistatic PU Gap-type seal strip With antistatic PU Gap-type seal strip (Standard) 					
. which antistatio FO Gap-type sear strip (Standard)					

2 : With Corrosion-resistant protection strip

General technical data

Linear Unit	Carriage Iength	 Dynamic load capacity 	Dynamic moment			Fo	Max. permissible loads Forces Moments				Moved mass	* Max. length	* Max. stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fру [N]	Fpz [N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]	[kg]	Lmax [mm]	[mm]
CTV 90 S	35	4620	125	17	34	2000	4540	125	17	34	0,3	750	665
CTV 90 L	100	9240	250	300	300	3990	9090	250	297	130	0,5	750	600

*For lengths / stroke over the stated value in the table above please contact us. Values for max. stroke are not valid for multiple carriages (equation of defining the linear unit length for particular size of the linear unit needs to be used).



General technical data for double carriage

Linear Carriage		Dynamic	* Dynamic moment			* Max. permissible loads				
Unit	Unit version load capacity					Forces		Moments		
		C [N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy[N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]
CT1 (00	S2	9240	250	4,6 × A	4,6 × A	3990	9090	250	4,5 × A	2,0 × A
CTV 90	L2	18480	500	9,2 × A	9,2 × A	7980	18170	500	9,0 × A	4,0 × A

 * A - Distance between carriages [mm]. More info on following pages.

Presented values are for informational purposes only. Exact values can be calculated using our sizing selection tool on Unimotion web site.

Ball Screw Drive data

Linear Unit	Ball screw	Max. rotational	1 Max. travel speed	² No load	d torque	Lead constant	3 Max, repe preci		Dynamic load capacity	Max. Axial load	Max. drive torque	⁴ Min. stroke	1 Max. accele-
		speed		Carriage: S	Carriage: L		[m STANDARD		BS				ration
	[d×l]	[rev / min]	[m/s]	[Nm]	[Nm]	[mm / rev]	ISO7	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s²]
CTV 90	12 × 5	5800	0,49	0,08 × nc	0,10 × nc	5	<u>+</u> 0,02	<u>+</u> 0,01	5000	5000	4,4 without Keyway	30	20

¹ Max. travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

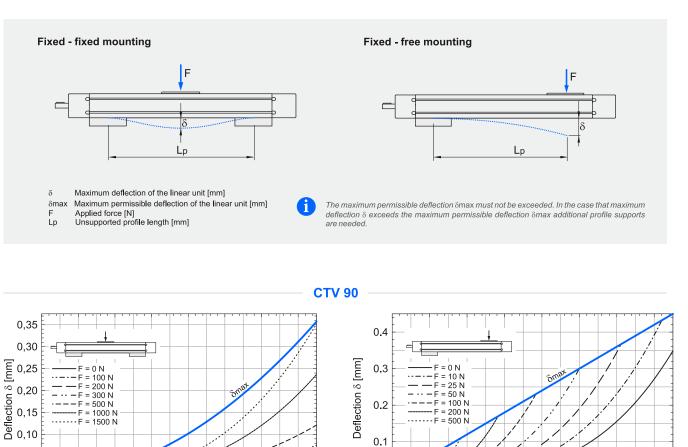
² The stated values are for strokes (and distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation. nc - Number of carriages

³ For the ball nut with the preload of 2% please contact us

⁴ For minimum stroke below the stated value in the table above please contact us.

Mass and mass moment of inertia

Linear unit	Mass of linear unit	Planar mome	ent of inertia
	[kg]	ly [cm⁴]	lz [cm ⁴]
CTV 90 S	1,6 + 0,006 × (Abs. stroke + (nc - 1) × A) + 0,30 × (nc - 1)	42.6	402.6
CTV 90 L	2,2 + 0,006 × (Abs. stroke + (nc - 1) × A) + 0,50 × (nc - 1)	13,6	102,6


Linear unit	Ball screw	Mass moment of inertia
	[d×l]	[10 ⁻⁵ kg m ²]
CTV 00 C	12 × 5	0,32 + 0,002 × (Abs. stroke + (nc - 1) × A) + 0,02 × (nc - 1)
CTV 90 S	12 × 10	0,38 + 0,002 × (Abs. stroke + (nc - 1) × A) + 0,08 × (nc - 1)
CT)(00	12 × 5	0,43 + 0,002 × (Abs. stroke + (nc - 1) × A) + 0,03 × (nc - 1)
CTV 90 L	12 × 10	0,53 + 0,002 × (Abs. stroke + (nc - 1) × A) + 0,13 × (nc - 1)

*Absolute stroke [mm]

A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages

Mass calculation doesn't include mass of motor, 61 reduction gear, switches and clamps.

Deflection of the linear unit

0.1

0.0

0

100

200

300

400

Unsupported profile length Lp [mm]

500

600

].

700

100

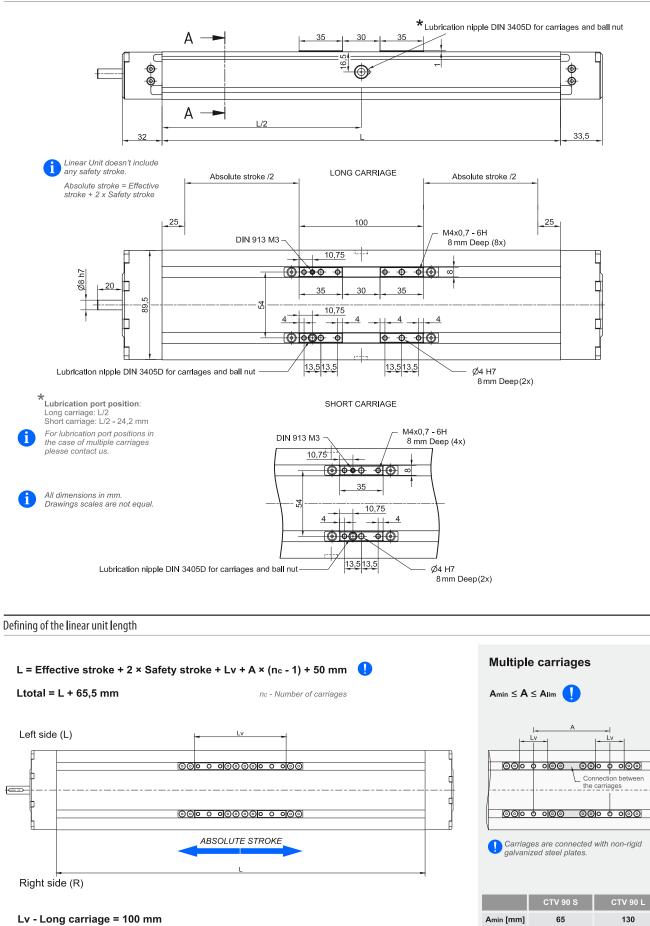
200

300

400

Unsupported profile length Lp [mm]

500

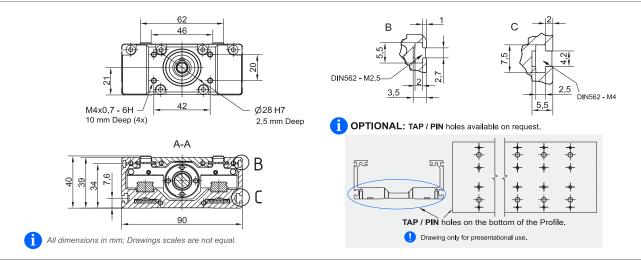

600

0,05

0,00

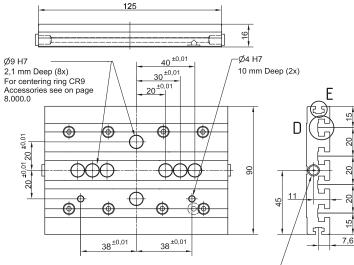
0

700



Lv - Short carriage = 35 mm

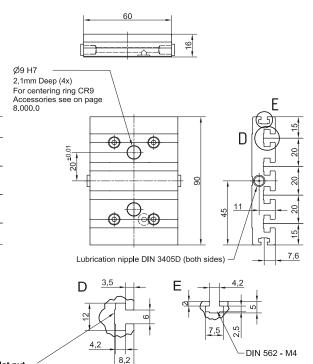
665


600

Alim [mm]

CONNECTION PLATE

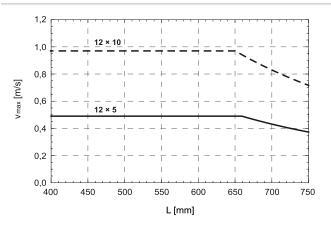
Linear Unit	Plate length [mm]	Weight [kg]	Code
CTV 90 S	60	0,21	103669
CTV 90 L	125	0,44	103668


Mounting elements for mounting the connection plate on the Linear unit are inlcuded.

Mounting the drive

- by the MOTOR SIDE DRIVE MSD (Page 7.095.0)
- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

Available on request.


CTV 90 S

Slot nut More nfo at page 8.005.0

5

Maximum travel speed as a function of the profile length (Vmax - L curves)

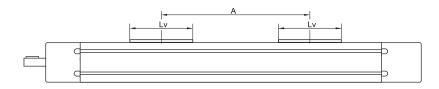


TECHNICAL DATA

General technical data

Linear Unit	Carriage Iength	 Dynamic load capacity 	i Dynamic moment			Foi	Max. pe ces	rmissibl	e loads Momer	ıts	Moved mass	* Max. Iength	* Max. stroke
	Lv [mm]	C [N]	Mx [Nm]	Му [Nm]	Mz [Nm]	Fру [N]	Fpz [N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]	[kg]	Lmax [mm]	[mm]
CTV 110 S	39	19800	650	118	235	4670	9390	310	90	90	0,63	4500	1410
CTV 110 L	124	39600	1305	1680	1680	13080	18800	620	800	550	1,36	1500	1325

*For lengths / stroke over the stated value in the table above please contact us. Values for max. stroke are not valid for multiple carriages (equation of defining the linear unit length for particular size of the linear unit needs to be used).



General technical data for double carriage

Linear			*	Dynamic momer	nt	* Max. permissible loads					
Unit	version	load capacity				Forces Moments					
		C [N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	
CTV 110	S2	39600	1300	19,8 × A	19,8 × A	12940	18790	620	9,4 × A	6,5 × A	
	L2	79200	2600	39,6 × A	39,6 × A	26100	37600	1240	18,8 × A	13,0 × A	

*A - Distance between carriages [mm]. More info on following pages.

Presented values are for informational purposes only. Exact values can be calculated using our sizing selection tool on Unimotion web site.

Ball Screw Drive data

Linear Unit	Ball screw	rotational	1 Max. travel speed		d torque	Lead constant	3 Max. repe preci		Dynamic load capacity	Max. Axial load	Max. drive torque	⁴ Min. stroke	1 Max. accele-
		speed		Carriage: S	Carriage: L		[m STANDARD	m]	BS				ration
	[d×l]	[rev / min]	[m/s]	[Nm]	[Nm]	[mm / rev]	ISO7	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s²]
CTV 110	16 × 5	4200	0,35	0,17 × nc	0,20 × nc	5	<u>+</u> 0,02	<u>+</u> 0,01	13150	8700	5,5 with Keyway 7,7 without Keyway	40	20
010110	16 × 10	4200	0,70	0,18 × nc	0,21 × nc	10	± 0,02	<u>+</u> 0,01	11550	6730	5,5 with Keyway	40	20
	16 × 16		1,12	0,23 × nc	0,26 × nc	16	<u>+</u> 0,02	<u>+</u> 0,01	8170	4200	11,9 without Keyway		

1 Max. travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

² The stated values are for strokes (and distances between the carriages A) up to 500mm.

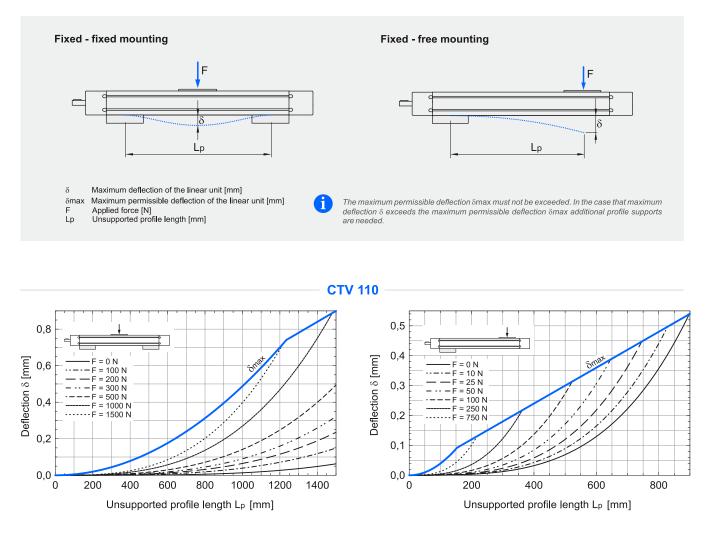
No Load Torque value increases with stroke (and with A) elongation. nc - Number of carriages

³ For the ball nut with the preload of 2% please contact us

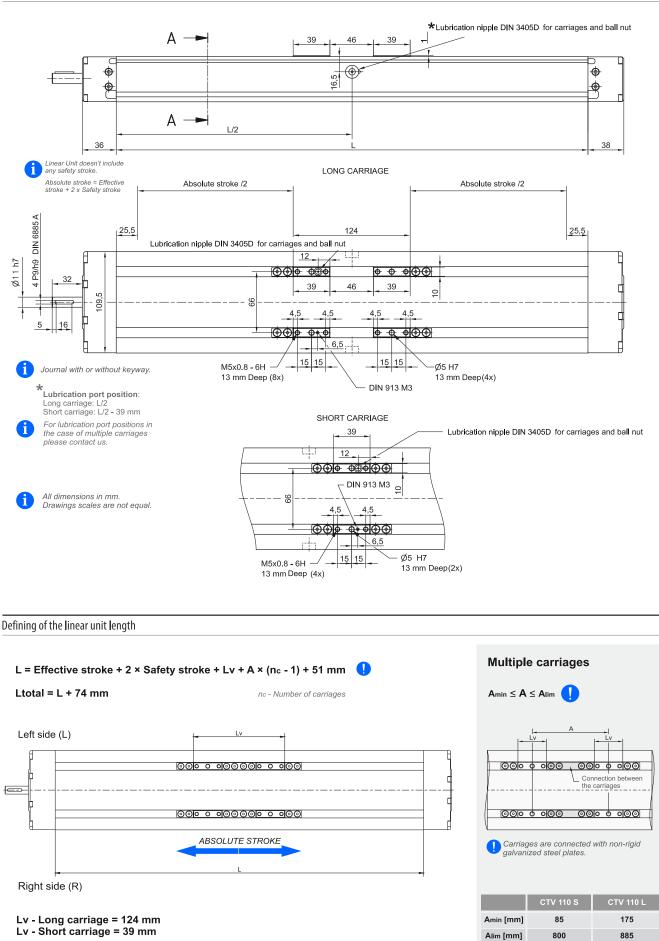
⁴ For minimum stroke below the stated value in the table above please contact us.

TECHNICAL DATA

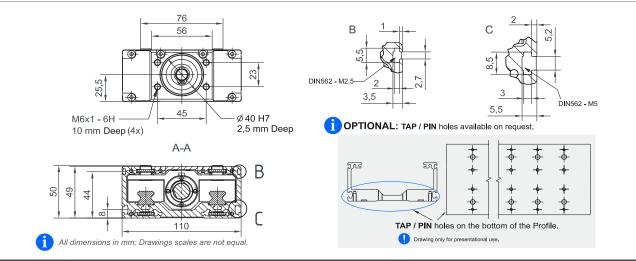
Mass and mass moment of inertia


Linear unit	Mass of linear unit	Planar mome	ent of inertia
	[kg]	ly [cm⁴]	lz [cm⁴]
CTV 110 S	3,3 + 0,008 × (Abs. stroke + (nc - 1) × A) + 0,63 × (nc - 1)	20.4	106.0
CTV 110 L	4,6 + 0,008 × (Abs. stroke + (nc - 1) × A) + 1,36 × (nc - 1)	29,1	196,0

Linear unit	Ball screw	Mass moment of inertia
	[d × l]	[10 ⁻⁵ kg m ²]
	16 × 5	0,70 + 0,005 × (Abs. stroke + (nc - 1) × A) + 0,04 × (nc - 1)
CTV 110 S	16 × 10	0,82 + 0,005 × (Abs. stroke + (nc - 1) × A) + 0,16 × (nc - 1)
	16 × 16	1,07 + 0,005 × (Abs. stroke + (nc - 1) × A) + 0,41 × (nc - 1)
	16 × 5	1,19 + 0,005 × (Abs. stroke + (nc - 1) × A) + 0,09 × (nc - 1)
CTV 110 L	16 × 10	1,45 + 0,005 × (Abs. stroke + (nc - 1) × A) + 0,34 × (nc - 1)
	16 × 16	1,99 + 0,005 × (Abs. stroke + (nc - 1) × A) + 0,88 × (nc - 1)

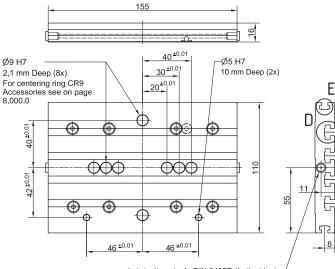

*Absolute stroke [mm]

A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.


Deflection of the linear unit

DIMENSIONS

DIMENSIONS



25

Slot nut

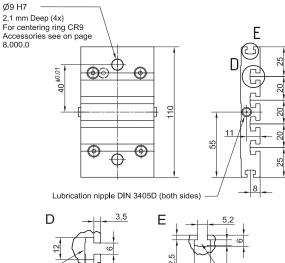
CONNECTION PLATE

CTV 110 L

Lubrication nipple DIN 3405D (both sides)

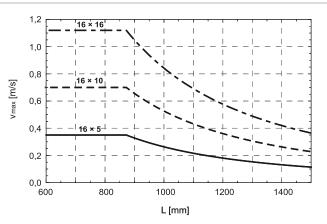
Linear Unit	Plate length [mm]	Weight [kg]	Code
CTV 110 S	60	0,37	103671
CTV 110 L	155	0,74	103670

Mounting elements for mounting the connection plate on the Linear unit are inlcuded.


Mounting the drive

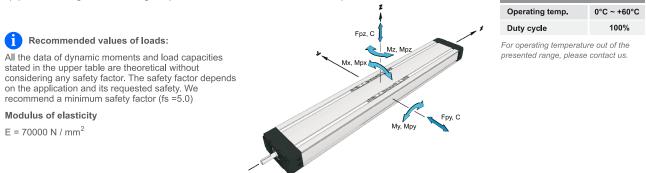
- by the MOTOR SIDE DRIVE MSD (Page 7.095.0)
- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

Available on request.


CTV 110 S

4,2 DIN 562 - M5 82 More info at page 8.005.0

Maximum travel speed as a function of the profile length (Vmax = L curves)


TECHNICAL DATA

General technical data

Linear Unit	Carriage length	i Dynamic Ioad capacity	i Dyr	(i) Dynamic moment			Max. pe rces	rmissib l e	e loads Momen	ts	Moved mass	* Max. Iength	* Max. stroke
	Lv [mm]	C[N]	Mx [Nm]	Му [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Мру	Mpz [Nm]	[kg]	Lmax [mm]	[mm]
CTV 145 S	49	34200	1500	260	520	8930	15320	674	260	180	1,19	4000	1690
CTV 145 L	149	68400	3005	3420	3420	17870	30680	1350	1700	893	2,61	1800	1590
ala													

 * For lengths / stroke over the stated value in the table above please contact us.

Values for max. stroke are not valid for multiple carriages (equation of defining the linear unit length for particular size of the linear unit needs to be used).

General technical data for double carriage

Linear			*	Dynamic momer	nt	* Max. permissible loads					
Unit	version	load capacity				For	ces		Moments		
		C [N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy[N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	
CTV 145	S2	68400	3000	34,2 × A	34,2 × A	17870	30640	1350	15,3 × A	8,9 × A	
617 145	L2	136800	6000	68,4 × A	68,4 × A	35700	61300	2700	30,6 × A	17,8 × A	

*A - Distance between carriages [mm]. More info on following pages.

Presented values are for informational purposes only. Exact values can be calculated using our sizing selection tool on Unimotion web site

Ball Screw Drive data

Linear Unit	Ball screw	Max. rotational	1 Max. travel speed	² No load torque		Lead constant	3 Max. repe preci		Dynamic load capacity	Max. Axial load	Max. drive torque	⁴ Min. stroke	1 Max. accele-
	speed		Carriage: S	Carriage: L		[m STANDARD	m]	BS				ration	
	[d×l]	[rev/min]	[m/s]	[Nm]	[Nm]	[mm / rev]	ISO7	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s²]
	20 × 5		0,28	0,30 × nc	0,35 × nc	5	<u>+</u> 0,02	<u>±</u> 0,01	14800	14800	11,9 with Keyway 13,0 without Keyway		
CTV 145	20 × 10	3300	0,55	0,32 × nc	0,37 × nc	10	<u>+</u> 0,02	± 0,01	15900	13850	11,9	55	20
	20 × 20		1,10	0,45 × nc	0,50 × nc	20	± 0,02	<u>+</u> 0,01	16250	6930	with Keyway 24,5 without Keyway		
	20 × 50	3000	2,50	0,80 × nc	0,85 × nc	50	<u>+</u> 0,02	<u>+</u> 0,01	13000	2770	without Keyway		

¹ Max. travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.
² The stated values are for strokes (and distances between the carriages A) up to 500mm.

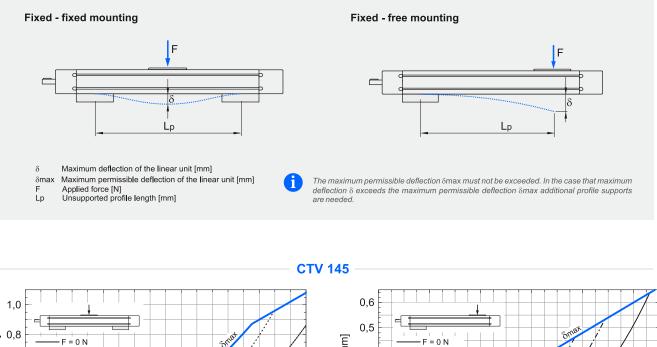
No Load Torque value increases with stroke (and with A) elongation nc - Number of carriages

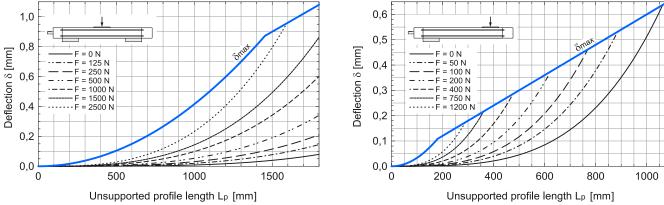
 3 For the ball nut with the preload of 2% please contact us

⁴ For minimum stroke below the stated value in the table above please contact us.

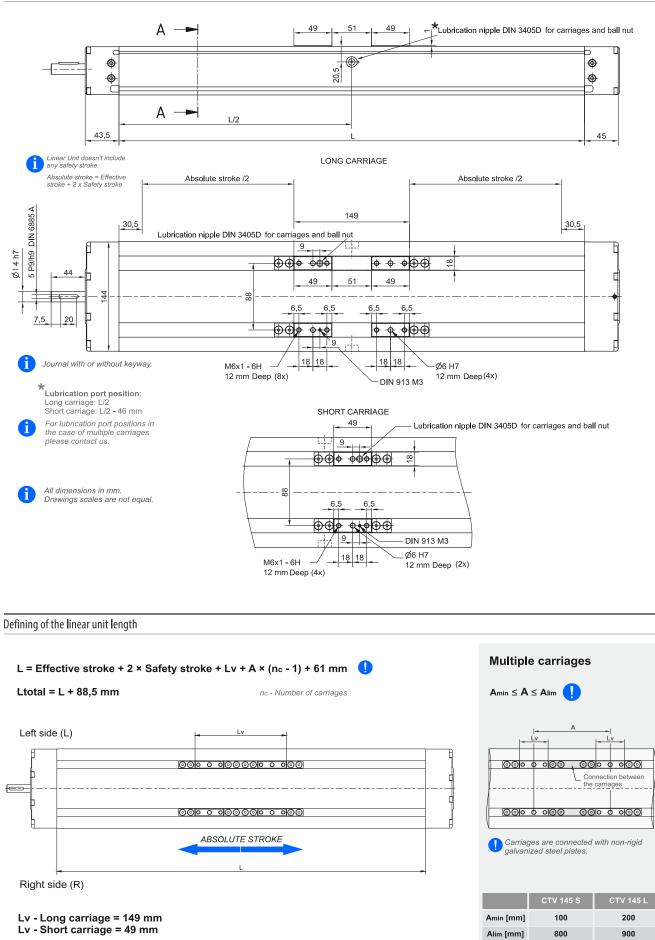
TECHNICAL DATA

Mass and mass moment of inertia

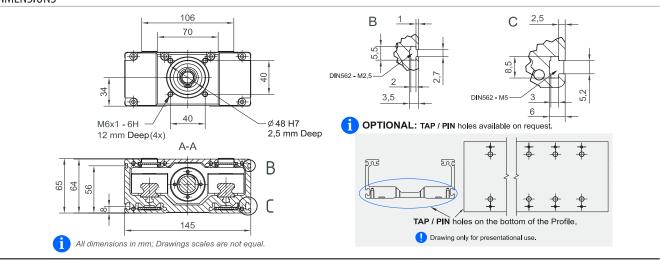

Linear unit	Mass of linear unit	Planar mome	ent of inertia
	[kg]	ly [cm⁴]	lz [cm ⁴]
CTV 145 S	5,7 + 0,015 × (Abs. stroke + (nc - 1) × A) + 1,19 × (nc - 1)	05.2	692.2
CTV 145 L	8,4 + 0,015 × (Abs. stroke + (nc - 1) × A) + 2,61 × (nc - 1)	85,3	682,3


Linear unit	Ball screw	Mass moment of inertia
	[d×l]	[10 ⁻⁵ kg m ²]
	20 × 5	3,04 + 0,013 × (Abs. stroke + (nc - 1) × A) + 0,08 × (nc - 1)
071/445.0	20 × 10	3,27 + 0,013 × (Abs. stroke + (nc - 1) × A) + 0,30 × (nc - 1)
CTV 145 S	20 × 20	4,17 + 0,013 × (Abs. stroke + (nc - 1) × A) + 1,21 × (nc - 1)
	20 × 50	10,50 + 0,013 × (Abs. stroke + (nc - 1) × A) + 7,54 × (nc - 1)
	20 × 5	4,43 + 0,013 × (Abs. stroke + (nc - 1) × A) + 0,17 × (nc - 1)
CTV 145 L	20 × 10	4,92 + 0,013 × (Abs. stroke + (nc - 1) × A) + 0,66 × (nc - 1)
CTV 145 L	20 × 20	6,91 + 0,013 × (Abs. stroke + (nc - 1) × A) + 2,64 × (nc - 1)
	20 × 50	20,79 + 0,013 × (Abs. stroke + (nc - 1) × A) + 16,53 × (nc - 1)

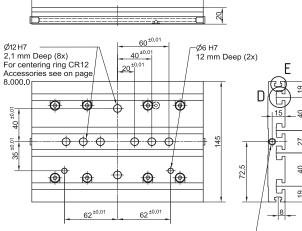
*Absolute stroke [mm]


A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

Deflection of the linear unit



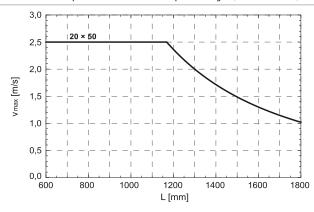
DIMENSIONS


DIMENSIONS

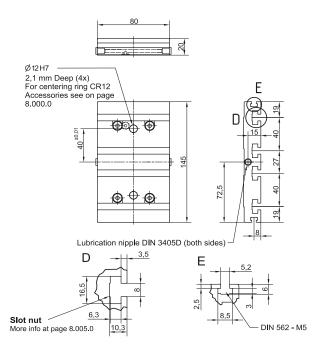
CONNECTION PLATE

CTV 145 L

190



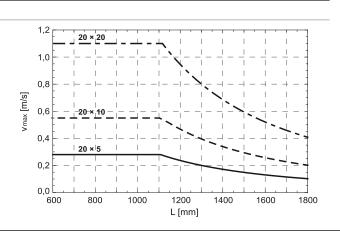
Lubrication nipple DIN 3405D (both sides) $_$


Linear Unit	Plate length [mm]	Weight [kg]	Code
CTV 145 S	80	0,78	103673
CTV 145 L	190	1,54	103672

Mounting elements for mounting the connection plate on the Linear unit are inlcuded.

Maximum travel speed as a function of the profile length (Vmax - L curves)

CTV 145 S



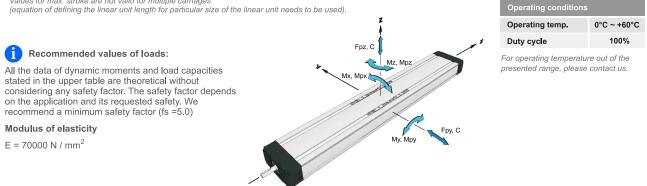
Mounting the drive

- by the MOTOR SIDE DRIVE - MSD (Page 7.095.0)

- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

i Available on request.

1


TECHNICAL DATA

General technical data

* Max.	* Max.	Moved		Max. permissible loads					namic mom	i Dyı	i Dynamic	Carriage	Linear
stroke	length	mass	nts	Momen		rces	Fo				Ioad capacity	length	Unit
			Mpz	Мру	Мрх	Fpz	Fpy	. Mz	_ My	M×			
[mm]	Lmax [mm]	[kg]	[Nm]	[Nm]	[Nm]	[Ń]	[N]	[Nm]	[Nm]	[Nm]	C[N]	Lv [mm]	
2000		3,11	308	450	1600	24610	10000	900	450	3220	49600	80	CTV 200 S
1825	2200	6,21	1750	4550	3350	51540	20000	8680	8680	6445	99200	255	CTV 200 L
	2200							8680	8680	6445		255	CTV 200 L

For lengths / stroke over the stated value in the table above please contact us.

Values for max. stroke are not valid for multiple carriages (equation of defining the linear unit length for particular size of the linear unit needs to be used).

General technical data for double carriage

Linear	Carriage	Dynamic	*	Dynamic momer	nt	*		Max. perr	nissible loads				
Unit	version	load capacity				For	ces	Moments					
		C [N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy[N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]			
CTV 200	S2	99200	6440	49,6 × A	49,6 × A	20000	49230	3200	24,6 × A	10,0 × A			
017 200	L2	198400	12890	99,2 × A	99,2 × A	40000	103000	6700	51,5 × A	20,0 × A			

*A - Distance between carriages [mm]. More info on following pages.

Presented values are for informational purposes only. Exact values can be calculated using our sizing selection tool on Unimotion web site.

Ball Screw Drive data

1

Linear Unit	Ball screw	Max. rotational	1 Max. travel speed	² No load	d torque	Lead constant	3 Max, repe preci	eteability sion	Dynamic l oad capacity	Max. Axial load	Max. drive torque	⁴ Min. stroke	1 Max. accele-
		speed		Carriage: S	Carriage: L		[m STANDARD	m]	BS				ration
	[d×l]	[rev / min]	[m/s]	[Nm]	[Nm]	[mm / rev]	ISO7	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s ²]
	32 × 5	2150	0,18	0,60 × nc	0,70 × nc	5	<u>+</u> 0,02	<u>+</u> 0,01	18850	18850	16,7 with Keyway 16,7 without Keyway	65	
CTV 200	32 × 10		0,50	0,70 × nc	0,80 × nc	10	<u>+</u> 0,02	<u>+</u> 0,01	37000	29600	27,3 with Keyway	60	20
	32 × 20	3000	1,00	0,75 × nc	0,85 × nc	20	<u>+</u> 0,02	<u>+</u> 0,01	22950	14800	52.3		
	32 × 32		1,60	0,80 × nc	0,90 × nc	32	<u>+</u> 0,02	<u>+</u> 0,01	15550	9240	without Keyway	70	

¹ Max. travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.
² The stated values are for strokes (and distances between the carriages A) up to 500mm.

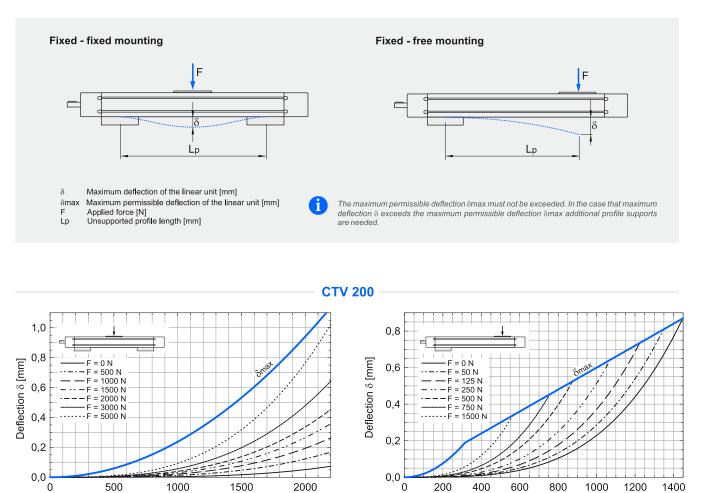
No Load Torque value increases with stroke (and with A) elongation nc - Number of carriages

 3 For the ball nut with the preload of 2% please contact us

⁴ For minimum stroke below the stated value in the table above please contact us.

TECHNICAL DATA

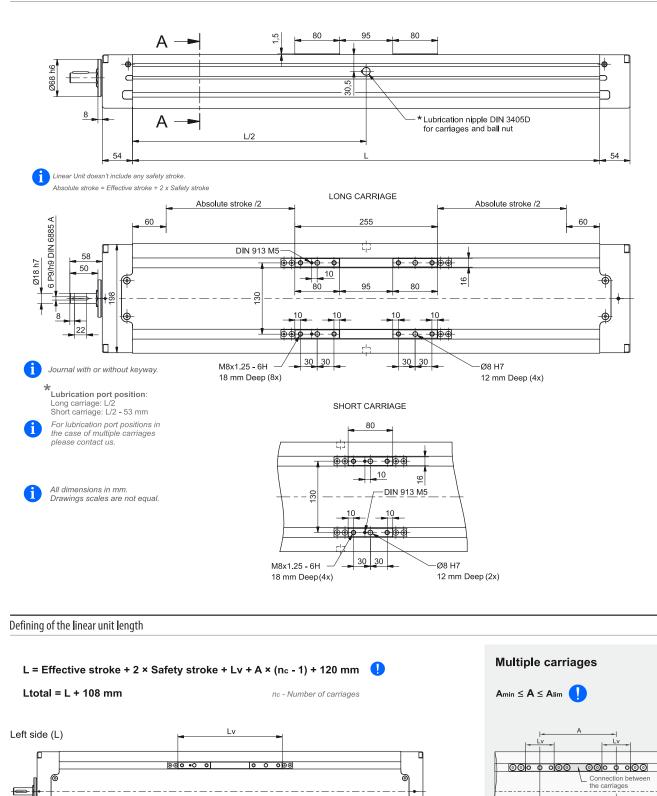
Mass and mass moment of inertia


Linear unit	Mass of linear unit	Planar mome	ent of inertia
	[kg]	ly [cm⁴]	lz [cm ⁴]
CTV 200 S	15,4 + 0,031 × (Abs. stroke + (nc - 1) × A) + 3,11 × (nc - 1)	417.4	2007.2
CTV 200 L	23,8 + 0,031 × (Abs. stroke + (nc - 1) × A) + 6,21 × (nc - 1)	417,4	3007,3

Linear unit	Ball screw	Mass moment of inertia
	[d×l]	[10 ⁻⁵ kg m ²]
	32 × 5	21,17 + 0,069 × (Abs. stroke + (nc - 1) × A) + 0,20 × (nc - 1)
	32 × 10	21,76 + 0,069 × (Abs. stroke + (nc - 1) × A) + 0,79 × (nc - 1)
CTV 200 S	32 × 20	24,12 + 0,069 × (Abs. stroke + (nc - 1) × A) + 3,15 × (nc - 1)
	32 × 32	29,04 + 0,069 × (Abs. stroke + (nc - 1) × A) + 8,07 × (nc - 1)
	32 × 5	33,41 + 0,069 × (Abs. stroke + (nc - 1) × A) + 0,39 × (nc - 1)
CTV 200 L	32 × 10	34,59 + 0,069 × (Abs. stroke + (nc - 1) × A) + 1,57 × (nc - 1)
CTV 200 L	32 × 20	39,31 + 0,069 × (Abs. stroke + (nc - 1) × A) + 6,29 × (nc - 1)
	32 × 32	49,12 + 0,069 × (Abs. stroke + (nc - 1) × A) + 16,11 × (nc - 1)

*Absolute stroke [mm]

A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.


Deflection of the linear unit

Unsupported profile length Lp [mm]

Unsupported profile length Lp [mm]

DIMENSIONS

000.00

Right side (R)

Lv - Long carriage = 255 mm

Lv - Short carriage = 80 mm

0 0 000

ABSOLUTE STROKE

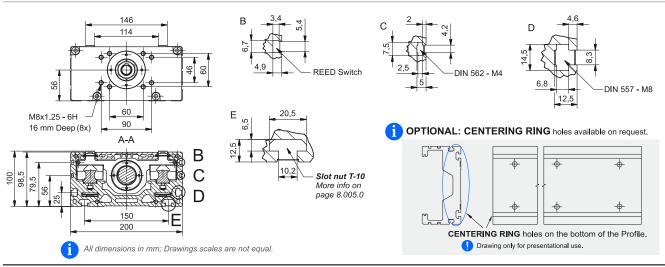
305

* 310

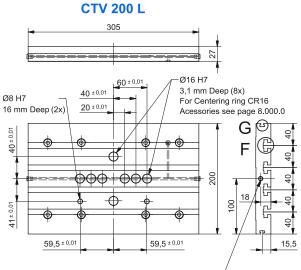
1075

Carriages are connected with non-rigid galvanized steel plates.

130


* 195

900


Amin [mm]

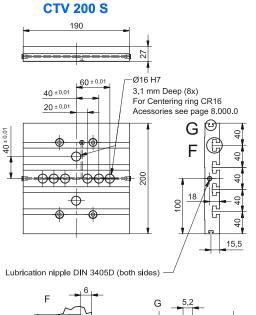
Alim [mm]

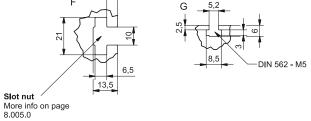
DIMENSIONS

CONNECTION PLATE

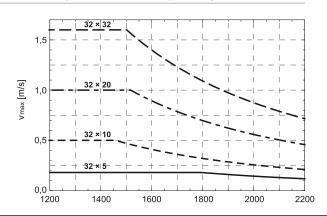
Lubrication nipple DIN 3405D (both sides)

Linear Unit	Plate length [mm]	Weight [kg]	Code
CTV 200 S	190	2,32	103675
CTV 200 L	305	3,75	103674

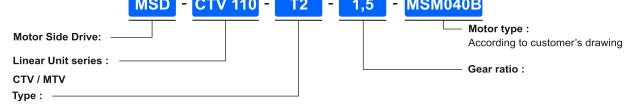

Mounting elements for mounting the connection plate on the Linear unit are inlcuded. Please consider our advice in our Maintenance- and assembly instructions


Mounting the drive

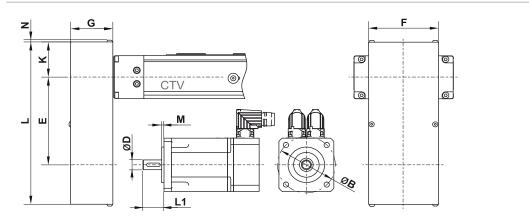
i


- by the MOTOR SIDE DRIVE MSD (Page 7.095.0)
- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

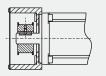
Available on request.



Maximum travel speed as a function of the profile length (Vmax - L curves)



STRUCTURAL DESIGN



TECHNICAL DATA AND DIMENSIONS

Keyway

MTV 40 G2 Ν E М 1 Π 0 6 ØD ØC 00 α L1 ш 0 0 0 Д 0 0 Đ 0-0 Ø \odot \mathbf{X} MTV 40 0 0 6 G

TECHNICAL DATA AND DIMENSIONS

Technical data

Linear Unit	Туре	Gear	Max, drive	** Max,	Mass moment of	Mass				Mot	or size l im	its [m	m]		
		ratio	torque (linear unit)	radial load on shaft	inertia	***	ØВ	øc	*м		L1		øi		
		i	[Nm]	[N]	[10 ⁻⁶ kg m ²]	[kg]	max	max	max	m Clamping set	in Keyway	max	Clamping set max	Key min	way max
MTV 40	T1	1	1,3	60	4,6	0,5							8	>8	12
IVI I V 40	11	1,5	1,3	60	5,4	0,5	60	36	4		20	32	8	-	-
MTV 40	Т2	1	3	80	45	0,8	80	52	4		25	39	19	-	-
WITV 40	12	1,5	3	80	31	0,7	80	52	4		20	39	10	>10	14
CTV 90	T1	1	2,7	90	75	0,8	70		4		25	39	19	-	-
010.00		1,5	2,7	90	45	0,7	10	_	4		25	55	10	>10	14
CTV 110	T1	1	5	175	70	0,8	70	_	4		25	39	19	-	-
MTV 65		1,5	5	175	45	0,8	10	_	-	****	20	00	10	>10	14
CTV 110	Т2	1	9	245	210	1,5	100	_	4		30	49	22	-	-
MTV 65	12	1,5	11	235	330	1,5	100		-		50	40	19	>19	28
CTV 145	T1	1	13	350	210	1,5	100		4		30	49	22	-	-
MTV 80		1,5	19	410	330	1,6	100	-	4		50	45	19	>19	28
CTV 145	Т2	1	19	410	550	3,0	130		4		35	59	35	-	-
MTV 80	12	2	24	375	860	2,9	130	-	4		35	09	19	>19	28
CTV 200	T1	1	25	500	640	3,8	120		4		25	50	35	-	-
MTV 110	.,	2	25	400	960	3,6	130	-	4		35	59	19	>19	28

(max. drive speed: 3000 1/min; No load torque: approx. 0,5 Nm)

*For a bigger value an additonal adapter plate is used. For the case of MTV 40 a thicker plate may be used.

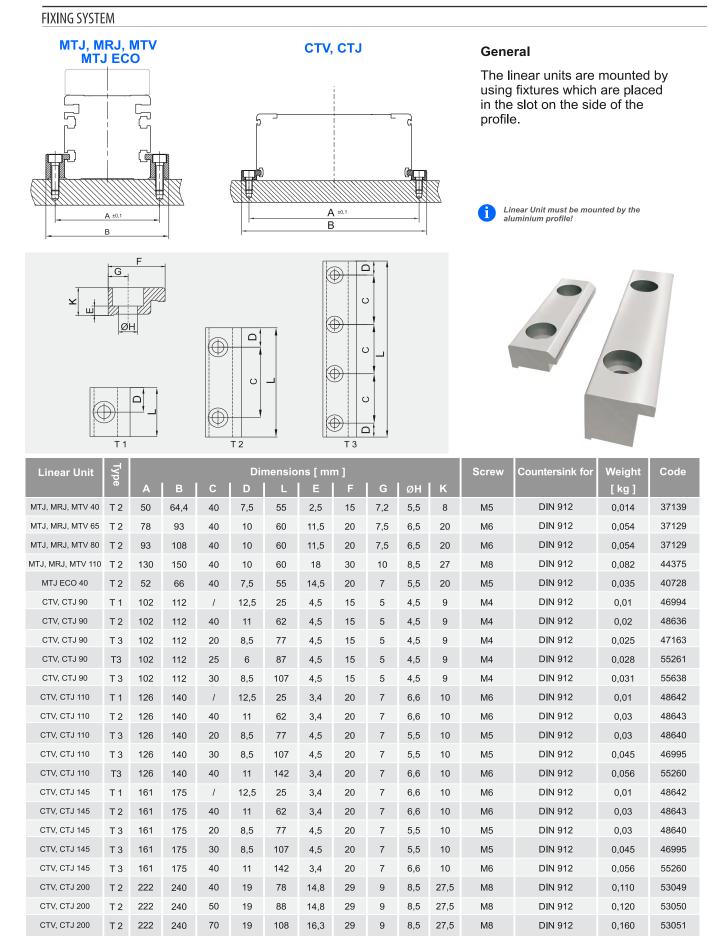
** This is the load which is linearly dependent on the max. drive torque and is generated by the correct pretension of the belt. This load needs to be reduced in accordance with the capabilities of the motor.

***This is an average value. It could differ depending to the motor dimensions.

**** Minimum dimension L1 depends on the size of particular clamping set. Values can be found in the table on page 7.105.0.

Dimensions

Linear Unit	Туре	Gear ratio			Dimens	sions [n	nm]		
			E (± 0,5)		F		G2	к	
MTV 40	T1	1	58,5	113	52	39	33	26	6 *
1411 4 40		1,5	59	113	52	39	33	20	0
MTV 40	Т2	1	65	135	68	42	36	31	8 *
1411 4 40	12	1,5	64,5	155	00	42	30	51	0
CTV 90	T1	1	100	179	70	41	_	31	2
011 30		1,5	102	115	70	41	_	51	2
CTV 110	T1	1	100	179	70	41	_	31	2
MTV 65		1,5	112	190	70	41	-	51	2
CTV 110	Т2	1	145	250	90	51	_	43	2
MTV 65	12	1,5	139	250	90	51	-	43	2
CTV 145	T1	1	145	250	90	51	_	43	2
MTV 80		1,5	180	282	30	51	-	45	2
CTV 145	TO	1	160	007	120	61		56	0.5
MTV 80	Т2	2	158	297	120	01	-	96	2,5
CTV 200	T1	1	268	402	100	61		FC	25
MTV 110		2	267	403	120	01	-	56	2,5

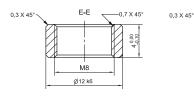

 * This is a standard value. It could differ depending to the motor dimensions M and L1.

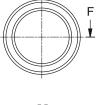
TECHNICAL DATA AND DIMENSIONS

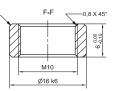
Linear Unit	Туре	Gear ratio													ØD	[mm]												
		i		5	6	6,35	7	8	9	9,53	10	11	12	14	15	16	17	18	19	20	22	24	25	25,4	28	30	32	35
MTV 40	T1	1	17	17	17	17	17	17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		1,5	17	17	17	17	20	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MTV 40	Т2	1	-	-	17	17	17	17	18	18	18	18	18	22	22	22	25	25	25	-	-	-	-	-	-	-	-	-
WIT V 40	12	1,5	-	-	17	17	17	17	18	18	18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CTV 90	T1	1	-	-	23	23	23	23	24	24	24	24	24	28	28	28	31	31	31	-	-	-	-	-	-	-	-	-
		1,5	-	-	23	23	23	23	24	24	24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CTV 110	T1	1	-	-	23	23	23	23	24	24	24	24	24	28	28	28	31	31	31	-	-	-	-	-	-	-	-	-
MTV 65		1,5	-	-	23	23	23	23	24	24	24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CTV 110	T2	1	-	-	-	-	-	23	24	24	24	24	24	28	28	28	31	31	31	31	31	-	-	-	-	-	-	-
MTV 65		1,5	-	-	-	-	23	23	24	24	24	24	24	28	28	28	31	31	31	-	-	-	-	-	-	-	-	-
CTV 145	T1	1	-	-	-	-	-	-	24	24	24	24	24	28	28	28	31	31	31	31	31	-	-	-	-	-	-	-
MTV 80		1,5	-	-	-	-	-	-	24	24	24	24	24	28	28	28	31	31	31	-	-	-	-	-	-	-	-	-
CTV 145	Т2	1	-	-	-	-	-	-	-	-	-	-	29	33	33	33	36	36	36	36	36	40	40	40	40	40	40	43
MTV 80	12	2	-	-	-	-	-	-	29	29	29	29	29	33	33	33	36	36	36	-	-	-	-	-	-	-	-	-
CTV 200	T1	1	-	-	-	-	-	-	-	-	-	-	29	33	33	33	36	36	36	36	36	40	40	40	40	40	40	43
MTV 110		2	-	-	-	-	-	-	29	29	29	29	29	33	33	33	36	36	36	-	-	-	-	-	-	-	-	-

Minimum dimension L1 [mm] depends on the motor shafts diameter ØD

Accessories




A


Recommended number of clamping fixtures: For T1 is recommended 6 pcs. per meter on each side, for T2 is recommended 3 pcs. per meter on each side and for T3 is recommended 3 pcs. per meter on each side.

CENTERING RINGS

Туре	Compatible with	Code
CR 7	MTJ/MRJ/MTJZ/MTV: 40, 65	23332
CR 9	MTJ/MRJ /MTV/MTJZ: 80,110 CTV/CTJ: 90, 110	23331
CR 7/9	MTJ, MRJ, MTV, MTJZ, CTV/CTJ: 90, 110	75114
CR 9/12	MTJ/MRJ /MTV/MTJZ: 80,110 CTV/CTJ: 90, 110, 145	48885
CR 12	CTV/CTJ: 145	49049
CR 16	CTV/CTJ: 200	53023

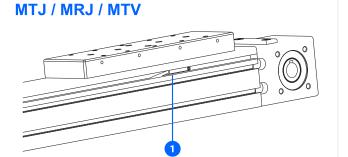
SLOT NUTS

DIN562

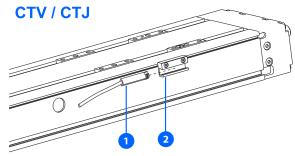
DIN557

Slot Nut

* - deviating CODE

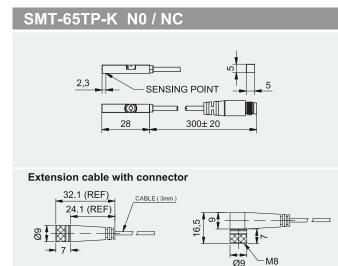

LINE	AR UNITS - PROFIL	E	DIN562		DIN557	Slot Nu	t		*.	- deviating	g CODE
CODE	NUT TYPE	MTJ/MRJ 40	MTV 40		MTJ/MRJ/ MTV/MTJZ 80		MTJ 40 ECO			CTV 145 CTJ 145	
41609	DIN562 - M2,5		Х					Х	Х	х	
40682	DIN562 - M4	X - *57017		Х	х			х			Х
40768	DIN562 - M5								х	х	
40769	DIN557 - M5			Х	х						
44451	DIN557 - M8					x					х
5746	Slot Nut M6						Х				
5551	Slot Nut T-10-M8										Х
5552	Slot Nut T-10-M6										Х
5553	Slot Nut T-10-M5										Х
5570	Slot Nut T-10-M8 L=90										Х

LINEAR UNITS - CONNECTION PLATES

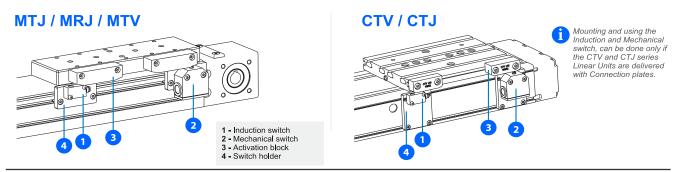

CODE	NUT TYPE	CTV 200 CTJ 200	CODE	NUT TYPE	CTV 145 CTJ 145	CODE	NUT TYPE	CTV 110 CTJ 110	CTV 90 CTJ 90
5551	Slot Nut T-10-M8	Х	5704	Slot Nut 8LM4	Х	48887	Slot Nut 6LM4	Х	Х
5552	Slot Nut T-10-M6	X	5703	Slot Nut 8LM5	Х	48888	Slot Nut 6LM5	Х	Х
5553	Slot Nut T-10-M5	Х	5702	Slot Nut 8LM6	X				
5570	Slot Nut T-10-M8 L =90	х	5701	Slot Nut 8LM8	х				

In order to improve the products in this catalogue the specifications are subject to change without notice.

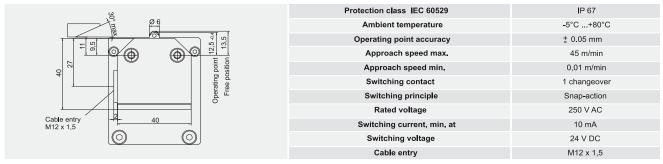
MAGNETIC FIELD SENSORS



- 1 Magnetic field sensor
- 2 Sensor holder

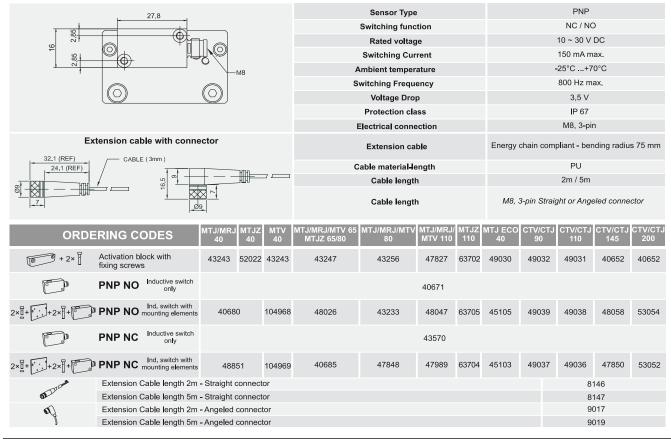

 Mounting of Magnetic field sensor on CTV and CTJ series requires a HOM sensor holder.

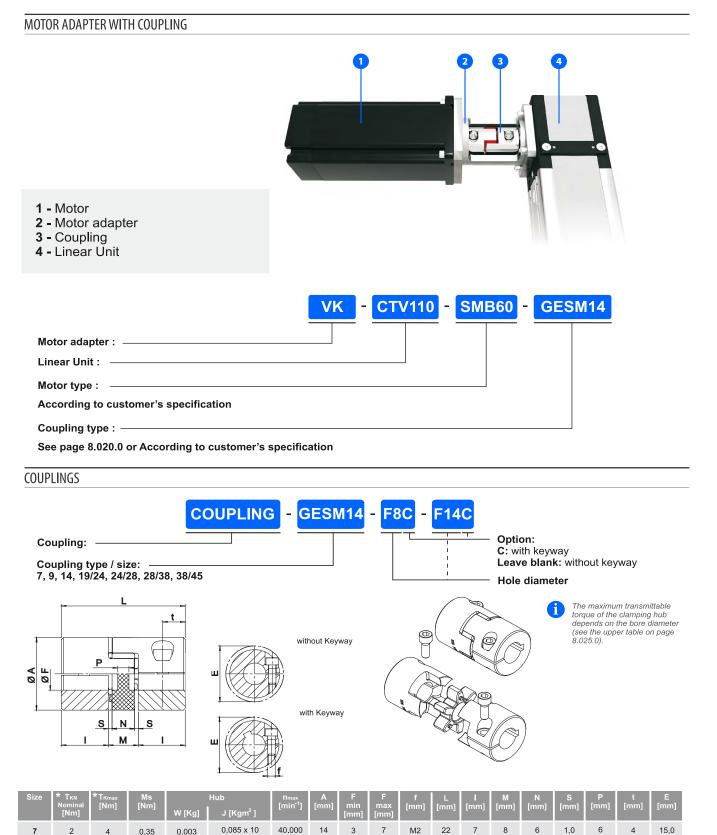
For MTV 40 a HOM sensor holder is also needed. For CTV/CTJ 200 a HOM sensor holder is not needed.


Code	Туре	Compatibility	
43851	HOM Sensor holder	MTV 40, CTV90, CTV110, CTV145, CTJ90, CTJ110, CTJ145	
74073	SMT-65TP-K NC	MTJ/MRJ/MTV/MTJZ:40,65,80,110 CTV/CTJ: 200	L B
77075	SMT-65TP-K NC + HOM	MTV 40, CTV90, CTV110, CTV145, CTJ90, CTJ110, CTJ145	
74074	SMT-65TP-K NO	MTJ/MRJ/MTV/MTJZ:40,65,80,110 CTV/CTJ: 200	L.W.I
77076	SMT-65TP-K NO + HOM	MTV 40, CTV90, CTV110, CTV145, CTJ90, CTJ110, CTJ145	
8146	Extension Cable I	ength 2m - Straight connector	O Dom
8147	Extension Cable	length 5m - Straight connector	O Dome
9017	Extension Cable	length 2m - Angeled connector	Ø
9019	Extension Cable	length 5m - Angeled connector	a f

TECHNICAL DATA	SMT-65TP-K NC	SMT-65TP-K NO
Sensor Type	GMR sensor	GMR sensor
Switching function	NC	NO
Output	PNP	PNP
Operating voltage	10 ~ 28 V DC	10 ~ 28 V DC
Switching Current	200 mA max.	200 mA max.
Power rating	5,5 W max.	5,5 W max.
Voltage Drop	1,5 V / 200mA max.	1,5 V / 200 mA max.
Current Consumption	10 mA / 24 V max.	10 mA / 24 V max.
Switching Frequency	1000 Hz	1000 Hz
Ambient temperature	-10 ~ +70°C	-10 ~ +70°C
Shock/Vibration	50 G / 9 G	50 G / 9 G
Protection class	IP 67	IP 67
LED indicator	yellow	Yellow
Electrical connection	M8, 3-pin	M8, 3-pin
Cable material length	PU - 0,3 m	PU - 0,3 m
Extension cable	Energy chain compliant	Energy chain compliant

MS- Mehanical switch


TECHNICAL DATA



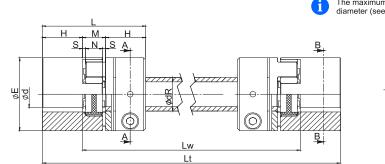
ORDER	ING CODES	MTJ/MRJ 40	MTJZ 40	MTV 40	MTJ/MRJ/MTV 65 MTJZ 65/80	MTJ/MRJ/MTV 80	MTJ/MRJ/ MTV 110	MTJZ 110	MTJ ECO 40	CTV/CTJ 90	CTV/CTJ 110	CTV/CTJ 145	CTV/CTJ 200
1 + 2×	Activation block with fixing screws	43243	52022	43243	43247	43256	47827	63702	49030	49032	49031	40652	40652
	Mechanical switch only						47921						
2× + + + 2× +	Hechanical switch with mounting elements		83	104970	40687	40689	47826	63703	49035	49034	49033	47939	53055

IS-Inductive switch

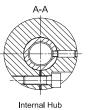
TECHNICAL DATA

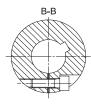
			0,00	0,000														
9	5	10	0,75	0,007	0,42 x 10	28.000	20	4	10	M2,5	30	10	10	8	1,0	2	5	23,4
14	12,5	25	1,4	0,018	2,6 x 10	19.000	30	6	16	M3	35	11	13	10	1,5	2	5,5	32,2
19/24	17	34	11	0,071	18,1 x 10	14.000	40	10	20	M6	66	25	16	12	2,0	3,5	12	45,7
24/28	60	120	11	0,156	74,9 x 10	10.600	55	10	32	M6	78	30	18	14	2,0	4	12	56,4
28/38	160	320	25	0,240	163,9 x 10	8.500	65	14	35	M8	90	35	20	15	2,5	5,2	13,5	72,6
38/45	325	650	25	0,440	465,5 x 10	7.100	80	19	45	M8	114	45	24	18	3,0	5,6	16	83,3

*The values of nominal TKN** and max. TKmax** transmissible torque in the upper table are valid for coupling with Keyway! **for legend see page 8.025.0

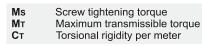

LINEAR UNITS ACCESSORIES

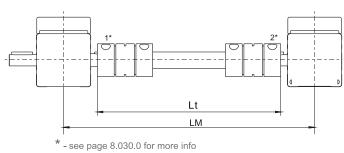
Size					R	ecomr	nendec	l coup l	ing bo	re diam	n. and T	Transm	nissib l e	Torqu	ie [Nm]	- valic	l for sh	aft to l	erances	s k6 wi	thout k	(eyway	,		
	Ø4	Ø5	Ø6	Ø7	Ø8	Ø9	Ø10	Ø11	Ø12	Ø14	Ø15	Ø16	Ø19	Ø20	Ø22	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø42	Ø45
7	0,7	0,8	1,0	1,1																					
9	1,1	1,4	1,7	1,9	2,2	2,5	2,8																		
14			2,5	2,9	3,3	3,7	4,1	4,6	5,0	5,8	6,2	6,6													
19/24							23	25	27	32	34	36	43	45											
24/28							23	25	27	32	34	36	43	45	50	54	57	63							
28/38										58	62	66	79	83	91	100	104	116	124	133	145				
38/45													79	83	91	100	104	116	124	133	145	158	166	174	187


Ms	Screw tightening torque	Nm
W	Weight	Kg
J	Coupling moment of inertia	kgm ²
nmax	Maximum rpm	min ⁻¹
ΤκΝ	Coupling nominal torque	Nm
Tkmax	Coupling maximum torque	Nm


The operating temperature range for the coupling is between -30 and +90°C

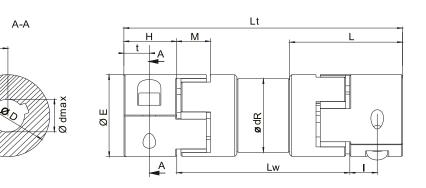
SYNCHRONISATION SHAFT OSL

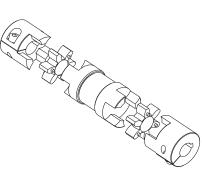

The maximum transmittable torque of the clamping hub depends on the bore diameter (see the upper table on page 8.025.0).



Size	Inte Ms [Nm]	rnal hub M⊤ [Nm]	C⊤ [Nm/rad]	E [mm]	H [mm]	ød min [mm]	Ød max [mm]	M [mm]	N [mm]	S [mm]	L [mm]	Lw min [mm]	Lt [mm]	dR x thickness [mm]	Weight [kg]	Moment of inertia [10 ⁻⁶ kg * m ²]
14	1,34	6	59	30	11	4	16	13	10	1,5	35	48		14 x 2,0	0,072 + 0,00021 * Lw	10,4 + 0,0076 * Lw
19/24	10	34	314	40	25	6	20	16	12	2	66	82	lest	20 x 3,0	0,284 + 0,00044 * Lw	72,4 + 0,0324 * Lw
24/28	10	45	596	55	30	8	28	18	14	2	78	96	requ	25 x 2,5	0,624 + 0,00048 * Lw	300 + 0,0614 * Lw
28/38	25	105	2868	65	35	10	38	20	15	2,5	90	110	uo	35 x 5,0	0,960 + 0,00128 * Lw	656 + 0,2954 * Lw
38/45	25	123	4521	80	45	12	45	24	18	3	114	138		40 x 5,0	1,760 + 0,00149 * Lw	1862 + 0,4656 * Lw

Nm Nm Nm/rad

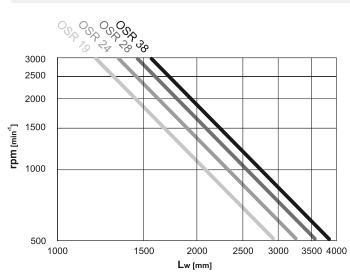

O THE CONTRACT


For longer distances Bearing Supports needed. Please contact us.

6

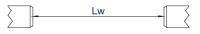
SYNCHRONISATION SHAFT OSR

е


The maximum transmittable torque of the clamping hub depends on the bore diameter (see the upper table on page 8.025.0).

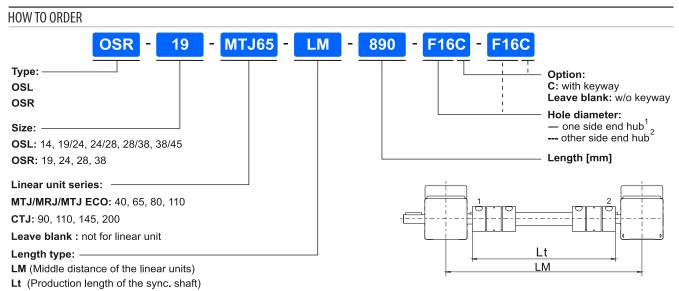
Size		d max [mm]		M⊤ [Nm]	C⊤ [Nm/rad]	E [mm]	H [mm]	 [mm]	L [mm]	M [mm]	Lw min [mm]	Lt [mm]	D [mm]	t [mm]	e [mm]	dR [mm]	Weight [kg]	Moment of inertia [10 ⁻⁶ kg * m ²]
19	10	20	10	39	1630	40	25	13	53,5	16	82	t.	47	12	15	36	0,30 + 0,00058 * Lw	66,0 + 0,1679 * Lw
24	10	28	10	53	3980	55	30	16	63	18	96	quest	57	14	20,8	45	0,62 + 0,00091 * Lw	242 + 0,4099 * Lw
28	14	35	25	137	7494	65	35	20	67	20	110	n re	73	15	25	55	0,98 + 0,00112 * Lw	572 + 0,7717 * Lw
38	15	45	25	180	14540	80	45	25	83,5	24	138	0	84	20	30	68	1,75 + 0,00140 * Lw	1522 + 1,4975 * Lw

Nm


Nm Nm/rad

Ms	Screw tightening torque
Μт	Maximum transmissible torque
Ст	Torsional rigidity per meter

INSTALLATION

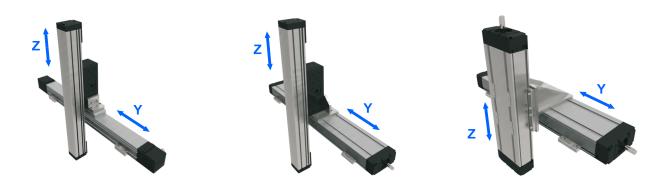

The overall length Lt is best determined as the distance between shaft ends length Lw plus 2x dimension H.

SELECTION DIAGRAM

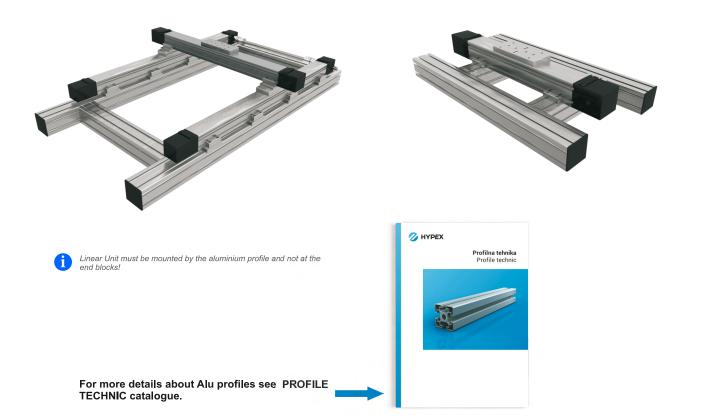
Ideal execution for long distance shat connections. Torque transmission is zero backlash. Designed for lengths up to 4m without bearing support (depending on rotation speed).

Standard lenghts available till 3m, for longer lengths please contact us.

X-Axis MTJ, MRJ, MTV, MTJ ECO, CTV = 0° - Y Axis = 0°


X-Axis					Y-Axis				
	MTJ, MRJ, MTV 40	MTJ, MRJ, MTV 65	MTJ, MRJ, MTV 80	MTJ, MRJ, MTV 110	MTJ 40 ECO	CTV, CTJ 90	СТV, СТЈ 110	CTV, CTJ 145	CTV, CTJ 200
MTJ, MRJ, MTV 40	CP M40 0 M40 0	CP M40 0 M65 0			CP M40 0 E40 0	CP M40 0 C90 0			
MTJ, MRJ, MTV 65	CP M65 0 M40 0	CP M65 0 M65 0	CP M65 0 M80 0		CP M65 0 E40 0	CP M65 0 C90 0	CP M65 0 C110 0		
MTJ, MRJ, MTV 80		CP M80 0 M65 0	CP M80 0 M80 0	CP M80 0 M110 0		CP M80 0 C90 0	CP M80 0 C110 0	CP M80 0 C145 0	
MTJ, MRJ 110		CP M110 0 M65 0	CP M110 0 M80 0	CP M110 0 M110 0			CP M110 0 C110 0	CP M110 0 C145 0	CP M110 0 C200 0
MTJ 40 ECO	CP E40 0 M40 0	CP E40 0 M65 0	CP E40 0 M80 0		CP E40 0 E40 0	CP E40 0 C90 0	CP E40 0 C110 0		
CTV, CTJ 90	CP C90 0 M40 0	CP C90 0 M65 0				CP C90 0 C90 0	CP C90 0 C110 0		
CTV, CTJ 110	CP C110 0 M40 0	CP C110 0 M65 0	CP C110 0 M80 0			CP C110 0 C90 0	CP C110 0 C110 0	CP C110 0 C145 0	
CTV, CTJ 145		CP C145 0 M65 0	CP C145 0 M80 0	CP C145 0 M110 0		CP C145 0 C90 0	CP C145 0 C110 0	CP C145 0 C145 0	
CTV, CTJ 200			CP C200 0 M80 0	CP C200 0 M110 0			CP C200 0 C110 0	CP C200 0 C145 0	CP C200 0 C200 0

X-Axis MTJ, MRJ, MTV, MTJ ECO, CTV = 0° - Y Axis = 90°


X-Axis					Y-Axis				
	MTJ, MRJ, MTV 40	MTJ, MRJ, MTV 65	MTJ, MRJ, MTV 80	MTJ, MRJ, MTV 110	MTJ 40 ECO	CTV, CTJ 90	CTV, CTJ 110	CTV, CTJ 145	CTV, CTJ 200
MTJ, MRJ, MTV 40	CP M40 0 M40 90	CP M40 0 M65 90			CP M40 0 E40 90	CP M40 0 C90 90			
MTJ, MRJ, MTV 65	CP M65 0 M40 90	CP M65 0 M65 90	CP M65 0 M80 90			CP M65 0 C90 90	CP M65 0 C110 90		
MTJ, MRJ, MTV 80		CP M80 0 M65 90	CP M80 0 M80 90	CP M80 0 M110 90		CP M80 0 C90 90	CP M80 0 C110 90	CP M80 0 C145 90	
MTJ, MRJ 110		CP M110 0 M65 90	CP M110 0 M80 90	CP M110 0 M110 90			CP M110 0 C110 90	CP M110 0 C145 90	CP M110 0 C200 90
MTJ 40 ECO	CP E40 0 M40 90	CP E40 0 M65 90	CP E40 0 M80 90		CP E40 0 E40 90	CP E40 0 C90 90	CP E40 0 C110 90		
CTV, CTJ 90	CP C90 0 M40 90	CP C90 0 M65 90				CP C90 0 C90 90			
CTV, CTJ 110	CP C110 0 M40 90	CP C110 0 M65 90	CP C110 0 M80 90			CP C110 0 C90 90	CP C110 0 C110 90		
CTV, CTJ 145		CP C145 0 M65 90	CP C145 0 M80 90	CP C145 0 M110 90		CP C145 0 C90 90	CP C145 0 C110 90	CP C145 0 C145 90	
CTV, CTJ 200			CP C200 0 M80 90	CP C200 0 M110 90			CP C200 0 C110 90	CP C200 0 C145 90	CP C200 0 C200 90

Y- Axis MTJ, MRJ, MTV, MTJ ECO, CTV, CTJ = 0° Z-Axis = 90°

Y-Axis					Z-A	xis					
	MTJZ 40	MTJZ 65	MTJZ 80	MTJZ 110	MTV 40	MTV 65	MTV 80	MTV 110	CTV 90	CTV 110	CTV 145
MTJ, MRJ, MTV 40	CP M40 0 Z40				CP M40 0 ZM40						
MTJ, MRJ, MTV 65	CP M65 0 Z40	CP M65 0 Z65			CP M65 0 ZM40	CP M65 0 ZM65					
MTJ, MRJ, MTV 80	CP M80 0 Z40	CP M80 0 Z65	CP M80 0 Z80		CP M80 0 ZM40	CP M80 0 ZM65	CP M80 0 ZM80				
MTJ, MRJ, MTV 110		CP M110 0 Z65	CP M110 0 Z80	CP M110 0 Z110		CP M110 0 ZM65	CP M110 0 ZM80	CP M110 0 ZM110			
MTJ 40 ECO	CP E40 0 Z40										
CTV, CTJ 90	CP C90 0 Z40	CP C90 0 Z65			CP C90 0 ZM40				CP C90 0 ZC90		
CTV, CTJ 110	CP C110 0 Z40	CP C110 0 Z65	CP C110 0 Z80		CP C110 0 ZM40	CP C110 0 ZM65	CP C110 0 ZM80		CP C110 0 ZC90	CP C110 0 ZC110	
CTV, CTJ 145	CP C145 0 Z40	CP C145 0 Z65	CP C145 0 Z80	CP C145 0 Z110		CP C145 0 ZM65	CP C145 0 ZM80	CP C145 0 ZM110	CP C145 0 ZC90	CP C145 0 ZC110	CP C145 0 ZC145
CTV, CTJ 200			CP C200 0 Z80	CP C200 0 Z110			CP C200 0 ZM80	CP C200 0 ZM110		CP C200 0 ZC110	CP C200 0 ZC145

CONNECTION ELEMENTS FOR CUNSTRICTIONS WITH ALU PROFILES

MULTI AXIS SYSTEMS

We offer all neccessary fittings including brackets, clamping fixtures and adapter plates in order to build multiaxis systems. Beside standard elements we supply also custom fixing and connection elements manufactured in our workshop.

4

5

7

Service life / Permissible load factor

Mz Mzdyn

Ν

Nm

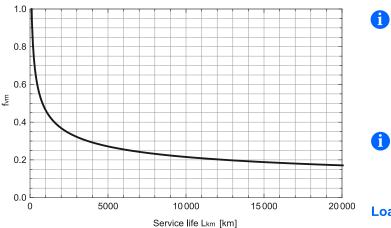
Nm

Nm

N

N

Nm


Nm

Nm

× Sn

SERVICE LIFE - LINEAR GUIDING

Mean load comparison factor fvm as a function of service life Lkm

Diagrams and equations are valid for:

- MTJ series
- MTV series
- MTJ ECO series
- MTJZ series
- CTJ series
- CTV series

._ .

Presented diagrams are showing theoretically determined service life of the linear guiding when mean load comparison factor fvm is taken into consideration.

Load comparison factor fv:

._ .

Detailed vi	iew:					$fv = \frac{ F }{Cd}$	<u> </u>	· <mark> Mx </mark> Mxdyn +	My Mydyn	+ M Mz
0.18	\mathbf{N}				-	fv Cdyn	Load comparis			
0.16						Mx dyn My dyn	Dynamic mom Dynamic mom	ent capacity		
ية 0.14					-	Mz dyn	Dynamic mom Applied force i	ent capacity	about the z	
0.12					-	Fy Fz Mx	Applied force i Applied mome	n the z direct	tion	
0.10						My Mz	Applied mome Applied mome	nt about the	y axis	
0.08					-	IVIZ	Applied mome	ni about the	2 0/13	
0.00	20000	40 000	60 000	80 000	100 000					
		Service I	life L _{km} [km]							

Service life calculation:

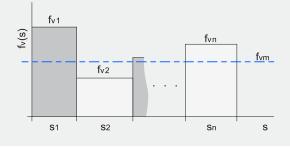
L km = (1 fvm/	³ .10 ²
-----------------	-----------	-------------------------------

Lkm Service life [km]

Safety factor fs:

$$fs = \frac{1}{fvm}$$

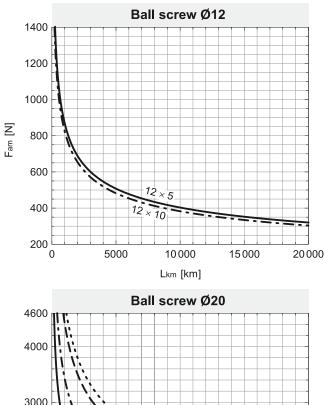
fs Safety factor

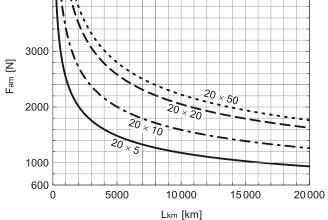

The safety factor depends on the application and its requested safety. We recommend a minimum safety factor fs = 5.0

Mean load comparison factor fvm calculation:

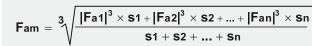
$$fvm = \sqrt[3]{\frac{fv1^3 \times S1 + fv2^3 \times S2 + ... + fvn^3}{S1 + S2 + ... + Sn}}$$

- fvm Mean load comparison factor
- i-th load comparison factor of a given loading regime fv i fv (s), $i \in \{1, 2, ..., n\}$
- i-th travel path of a given loading regime fv (s), i \in si {1,2,...,n}

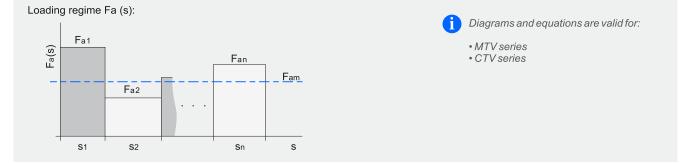

Loading regime fv (s):

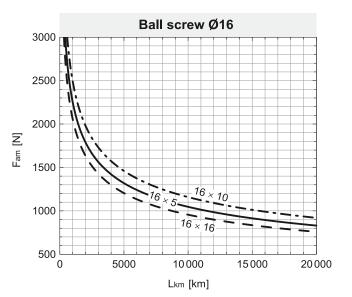


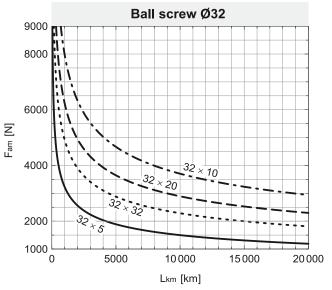
PERMISSIBLE LOAD FACTOR fp - LINEAR GUIDING Permissible load factor $f_p = \frac{|F_y|}{|F_{py}|} + \frac{|F_z|}{|F_{pz}|} + \frac{|M_x|}{|M_{px}|} + \frac{|M_y|}{|M_{py}|} + \frac{|M_z|}{|M_{pz}|} \le 1$ fp Max. permissible force in the y axis Fpy Ν Fpz Max. permissible force in the z axis Ν Мрх Max, permissible moment about the x axis Nm Max. permissible moment about the y axis Мру Nm Mpz Max. permissible moment about the z axis Nm


SERVICE LIFE - BALL SCREW

Applied mean axial force Fam as a function of service life Lkm






Mean axial force Fam calculation:

FamMean axial forceFa ii-th axial force of a

Diagrams presented above are showing theoretically determined service life of the ball screw when mean axial force Fam is taken into consideration.

UNIMOTION

We cover all major markets. If you wish to contact us, send us an enquiry and we would be happy to assist you.

GERMANY

NORTH AMERICA

Unimotion GmbH Walramstraße 23 D-65510 Idstein

www.unimotion.de vertrieb@unimotion.de 3952 Ben Hur Ave, Unit 5 Willoughby, OH 44094

www.unimotionusa.com info@unimotionusa.com

Unimotion: 2020